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We discuss control of low-dimensional systems which, when uncontrolled, are integrable in the Hamiltonian
sense. The controller targets an exact solution of the system in a region where the uncontrolled dynamics has
invariant tori. Both dissipative and conservative controllers are considered. We show that the shear flow
structure of the undriven system causes a Takens-Bogdanov bifurcation to occur when control is applied. This
implies extreme noise sensitivity. We then consider an example of these results using the driven nonlinear
Schrödinger equation.
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I. INTRODUCTION

In the last several years there has been a lot of interest in
improving the methods for the control of nonlinear physical
systems. Due to the large variety of behaviors which nonlin-
ear systems display, a single control theory which can be
applied to all nonlinear systems will be very difficult(if not
impossible) to develop. It seems likely that the best way to
approach the control of nonlinear systems is to learn how to
control classes of systems instead of trying to develop one
single all-encompassing theory. For example, in Ref.[1] con-
trol of Euler-Lagrange systems, which encompass a very
large class of nonlinear physical systems, are considered.
Similarly, the work reported here restricts itself to a particu-
lar class of physical systems: those which are well modeled
by integrable, or near-integrable, Hamiltonian dynamical
models. Finite dimensional examples of integrable systems
are linear oscillators and certain systems of nonlinear oscil-
lators. Examples in infinite dimensions includes soliton sys-
tems such as the Korteweg-de VriessKdVd, nonlinear
SchrödingersNLSd, and sine-Gordon equations. In particular
we are interested in studying the interplay of dissipative and
conservative terms as a means to control integrable Hamil-
tonian systems. Toward this end, our strategy is to use a
known exact solution as a target by turning it into an attrac-
tor, which cannot exist in the original Hamiltonian dynamics.
It is hoped that the knowledge gained from developing con-
trol laws for integrable Hamiltonian models that are simple
to use, and robust to perturbations, will provide insights for
developing control laws for real physical systems. The main
result of this paper is that when a seemingly natural control-
ler is applied to integrable Hamiltonian systems, a highly
degenerate bifurcation known as a Takens-Bogdanov bifur-
cation occurs which severely limits the controllability of the
system. As an example, the results described in Secs. I–IV
are then illustated on the nonlinear SchrödingersNLSd equa-
tion. The NLS is integrable in the Hamiltonian sense and is a
model system used to study phenomenon in plasmas and
nonlinear optics and a variety of other fields.

Here it is worth mentioning that Vaidya and Mezić [2]
have studied the controllability of a class of area-preserving
twist maps. These twist maps are one-dimensional integrable
Hamiltonian systems. They show that, under certain condi-

tions, when a time-dependent controller is applied to the in-
tegrable twist-map global controllability can be attained for
the system. In other words, the system can be controlled
from any initial state to any final state. Although their work
deals with maps and not flows, this demonstrates that global
controllability can arise when time-dependent controllers are
applied to flows.

The paper is organized as follows. In Sec. II we will begin
with some general remarks on integrable Hamiltonian sys-
tems and present our control law of interest. In Sec. III we
will study our control law when applied to an integrable
Hamiltonian system with one degree of freedom. We will see
that the degenerate shear flow dynamics inherent to an inte-
grable Hamiltonian system will cause a Takens-Bogdanov
bifurcation when control is applied. In Sec. IV we will dis-
cuss some aspects of the theory of Takens-Bogdanov bifur-
cations and their implications for robust control of the sys-
tem. Section V contains a detailed example which uses a
driven NLS to illustrate the results of Secs. III and IV. Fi-
nally, in Sec. VI we will conclude with some ideas for future
work in the area.

II. INTEGRABLE HAMILTONIAN SYSTEMS AND
CONTROL

Consider the following system of ordinary differential
equationssODEsd:

ż = Fszd, s1d

wherez,FPR2N andz are the “lab” coordinates, understood
as the “natural” physical coordinates. The system(1) is
known as the “open-loop”(or undriven/uncontrolled) dy-
namics.

In this paper, we specialize toFszd=J=H where

J = S 0 1

− 1 0
D , s2d

and the 0’s and 1’s areN3N zero and identity matrices and
Hszd is the Hamiltonian, a scalar function ofz. The system
(1) is calledintegrableif there existsN first integrals of(1)
which are independent and in involution. If the level sets of
the integrals are compact, then regions of the phase space are
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locally foliated by invariant manifolds with the topology of
N-tori [3]. In what follows, we assume(1) is an integrable
Hamiltonian system and we study the control of(1) on a
typical (though arbitrary) invariant torus in its phase space.

Consider a particular solution of(1), z0std, which lies on
one of those torifż0=Fsz0dg. We now apply a controller
which targetsz0std,

ż = Fszd + efsz0,zd, s3d

wherez0stdPR2N andf is a 2N-dimensional vector such that
fsz0,z0d=0. The control coupling(gain), e, is a 2N32N ma-
trix whose entries need not be small. In principle, the control
law f can also involve the past history ofzstd (i.e., feedback).
The equation(3) will be called our “closed-loop”(or driven/
controlled) dynamics. Note that the control is applied in the
“physical coordinates,”zstd.

Our problem is: How do we choosef so that the given
“target” orbit, z0, in the open-loop dynamics becomes an
attractor in the closed-loop dynamics? By adding the control-
ler, f, we are locally breaking up the tori and stabilizing one
particular orbit.

One choice forf is simply

ż = Fszd + e · sz0std − zd, s4d

wheree is the real 2N32N matrix, e=eR1+eIJ, “1” is the
2N32N identity matrix, andseR,eId are real constants with
eR.0. As we will show, this form of control can, for large
enougheR, lead to synchronization ofz to our target orbit,z0
[4]. Notice,

e2 = seR
2 − eI

2d1 + 2eIeRJ, s5d

thereforeseR,eId act like real and imaginary parts of a com-
plex scalar gain under matrix multiplication ofe.

We can study the nature of the control law(4) by perform-
ing a linear analysis about the target,z0std. Supposez
=z0std+d zstd and insert this into our closed-loop dynamics
(4),

ḋ z = JSstdd z − eRd z, s6d

whereSstd is a symmetric 2N32N matrix and involves the
Hessian of the Hamiltonian evaluated on the target orbitz0,

Sjkstd = U ]2H

] zj ] zk
U

Z=Z0std
− eId jk, s7d

andd jk is the 2N32N Kronecker delta function. In the case

of eR↑` and eI =0, (6) becomesḋ z<−eRd z. This gives
d zstd<e−eRtd zs0d which shows that in the limit ofeI =0 the
control law in (4) is purely dissipative andzstd→z0std on a
time scale ofOseR

−1d.
Now consider the case whereeR=0. For short times(i.e.,

t→ t+h) Sstd can be considered as a constant matrix and(6)
integrates to

d zst + hd = expshJ Sdd zstd. s8d

It is known from the theory of Lie groups[3] that the matrix
Mst+h,td;expshJSst ,eIdd is a symplectic matrix as long as
S is symmetric, which it is by(7). Hence, the control law in

(4) generates symplectic maps in the case ofeR=0 (i.e., it
generates time dependent canonical transformations). The or-
bits nearz0 neither attract toz0 nor repel away from it and
the controller is conservative.

In Appendix A, we show that in the neighborhood ofz0std
(4) can be rewritten in terms of a new set of canonical vari-
ables,Z,

Ż = J=ZKsZ,td − eRZ − eIJS0stdZ + OsZ2d, s9d

whereS0std is a symmetric matrix andK is a new Hamil-
tonian. In this paper we study the specific case in whichS0std
is constant. The presence of nonconstantS0std complicates
the analysis and is beyond the scope of this paper. As we will
show, the presence of a constantS0std is already a serious
complication in terms of nonlinear analysis of the control
law. In Sec. V, we will see that this simplification[of a con-
stantS0std] holds for the nonlinear Schrödinger equation.

The goal of our work is to turn the target orbitz0std into
an attractor. We wish to understand the geometry of the at-
tractor basin and the topology of nearby orbits. Doyon and
Dubé[5] demonstrate targeting periodic orbits of a particular
period,m, in Hamiltonian systems when the location and the
stability are unknown and the dynamics of the system are
chaotic. Our work complements this result in that we will be
studying the consequences of using both dissipative and con-
servative control for an integrable Hamiltonian system onto a
known orbit. In addition, we focus on the local question of
the closest distance to the basin boundary of our new attrac-
tor. This distance strongly depends upon whether the control
is conservative or dissipative. Note that there is no true
meaning of distance in phase space, hence by that term we
mean the typical noise level which would destabilize the
target. We will show that, due to the shear flow structure
inherent to integrable Hamiltonian systems, something
known as a “Takens-Bogdanov” bifurcation generically oc-
curs when control is applied. As we will see, the appearance
of a Takens-Bogdanov bifurcation implies that the evolution
of the system will be very sensitive to noise and parameter
uncertainty[6,7] in the purely dissipative limit of(4). We
will also see that by turning on the conservative part of the
drive, eI, the controllability is improved.

It should be pointed out that Haberman and Ho[8] have
studied dissipatively perturbed Hamiltonian systems in a re-
gime which contains two competing centers(which become
attractors once the dissipation has been “turned on”) sepa-
rated by a saddle in the phase space before the perturbation is
applied. Their Hamiltonian system is a nonlinear oscillator
where the drive frequency is near(or at) the natural fre-
quency of the system. Although the phase space topology
they study is similar to ours, we are asking different ques-
tions. Their work is concerned with deriving an analytic form
for the stable manifold of the saddle(basin boundary) using
asymptotic methods(once small dissipation has been ap-
plied). The work presented here is concerned with the ge-
neric properties of both dissipative and conservative control
laws applied to a general integrable Hamiltonian system.
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III. HAMILTONIAN SYSTEMS WITH ONE
DEGREE OF FREEDOM

Consider a Hamiltonian system with one degree of free-
dom and HamiltonianH=Hsq,pd, with q,pPR. The evolu-
tion of p andq is dictated by the canonical equations,

q̇ =
] Hsp,qd

] p
,

s10d

ṗ = −
] Hsp,qd

] q
.

Suppose that for this system, the Hamiltonian has regions
with compact level sets, implying there are regions of the
phase space which are foliated by circles(1-tori) [3]. These
circles are invariant under the flow generated byHsp,qd. On
a given family of these tori, the coordinatessp,qd can be
canonically transformed to the action-angle coordinates
sI ,fd and the Hamiltonian can be written asHsp,qd=HsId.
The evolution ofsI ,fd is of the form

İ = 0,
s11d

ḟ =
] HsId

] I
; vsId.

In these coordinates the dynamics of(11) looks locally like a
shear flow with each neighboring torus having a slightly dif-
ferent (constant) rotation rate(see Fig. 1). The evolution of
the action-angle variables is quite simple, making them the
natural coordinates for this region of the phase space. It is
important to keep in mind, however, that the evolution in the
original sp,qd coordinates, although periodic, can be quite
complicated.

The system(10), or equivalently(11), will be our open-
loop dynamics for control. The technique used to control
(10) is simple. First we must choose some target orbit of
(10), sI0,f0d, where

f0std = v0t + d s12d

with d being an arbitrary angle between 0 and 2p and v0
=]HsId /]I uI0. Without loss of generality, we will setd=0.
After choosing a target, we transform into a canonical coor-
dinate system where the target is fixed at the origin, using a
time dependent canonical transformation. This puts the target
orbit at rest at the origin. We then turn on the controller
which converts the origin into an attractor. We will find that
applying the controller results in what is known as a Takens-
Bogdanov bifurcation[9]. The presence of the Takens-
Bogdanov bifurcation has an important effect on our ability
to control the system to the target. Further, we will see that as
the control becomes more conservative(i.e., aseI /eR↑`), the
controllability, as measured by the minimum kick required to
destabilize the target, is greatly improved even wheneR

2

+eI
2 is fixed. However, there is a tradeoff: while a largeeI

and smalleR may produce a large basin of attraction it will
also have a long decay time to the target.

Let’s choose our target to be:I = I0 andf=f0std with f0

defined as above. We perform the previously mentioned ca-
nonical coordinate transformation using the generating func-
tion [10,11] F2sI8 ,f ,td=sf−v0tdsI8+ I0d with

I =
] F2

] f
= I8 + I0,

F =
] F2

] I8
= f − v0t, s13d

KsI8d = HsI8 + I0d +
] F2

] t
= HsI8 + I0d − sI8 + I0dv0.

Note that this transformation places the control target at the
origin, sI8 ,Fd=s0,0d.

Now we examine the dynamics about the origin via Tay-
lor exapansion of the new Hamiltonian,KsI8d about the tar-
get,

KsI8d = HsI0d +U ] H

] I8
U

I0

I8 +
1

2
U ]2H

] I82U
I0

I82 + ¯ − sI0 + I8dv0.

s14d

Next, we ignore the constant terms,HsI0d andv0I0, and col-
lect terms ofOsI83d and higher into a functionhsI8d,

KsI8d =
l

2
I82 + hsI8d. s15d

This Hamiltonian gives the following equations of motion:

SḞ

I 8̇
D = S0 l

0 0
DSF

I8
D + S fsI8d

0
D , s16d

wherefsI8d=dh/dI8 is OsI82d. The equation(16) is our open-
loop dynamics and describes a shear flow with the entireI8
=0 line fixed. Figure 1 shows the flow field of the dynamics
of (11) and(16). Such shear flow dynamics, characterized by
a degenerate linear term, are the setting for a Takens-
Bogdanov bifurcation[7].

FIG. 1. (A) shows the flow field of the open-loop dynamics of
(11). (B) shows the flow field of the open-loop dynamics of the
transformed coordinate system(16). Notice that the linear part of
(16) has only one eigenvector which lies along the line of stagna-
tion sI8=0d.
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Next, we examine the closed-loop dynamics. Recall(4),

ż = Fszd + seR1 + eIJdsz0std − zd,

with Fszd=J=Hszd and z0std is a solution to the open-loop
dynamicsseR=eI =0d. While the second term of the RHS of
(4) is linear in the “physical coordinates”z=sp,qd it will, in
general, contain nonlinear terms inz=sI8 ,Fd due to the non-
linear nature of the transformation fromsp,qd to sI8 ,Fd. Us-
ing (16) and the results from Appendix A, we can always
write the dynamics in the following form[possibly after a
near identity canonical transformation onsI8 ,Fd]:

SḞ

I 8̇
D = S − eR l

− heI − eR
DSF

I8
D + S f1sI8,F;ed

f2sI8,F;ed
D , s17d

where thee notation inf i refers to botheR andeI. The minus
sign in front of theeI term ensures that a center opens up at
the target(when the productlheI .0), as will be discussed
below, and

f1sI8,F;ed = fsI8d + e f̃1sI8,F;ed,
s18d

f2sI8,F;ed = e f̃2sI8,F;ed.

The general solution to the linear dynamics of(17) is:

SFstd
I8std

D

= e−eRt1 cossÎlheItd Î l

heI
sinsÎlheItd

−ÎheI

l
sinsÎlheItd cossÎlheItd 2

3SFs0d
I8s0d

D . s19d

Hence, we can see that the system undergoes a decaying
oscillation which will eventually settle onto the target(ori-
gin) with a decay time scale ofOs1/eRd and oscillation pe-
riod Os1/ÎeId.

The nonlinear behavior of systems with linear degeneracy
can be subtle. To develop an idea of how each term in the
closed-loop dynamics(purely dissipative and conservative)
behaves, we consider two limits:(i) eRÞ0, eI =0, and (ii )
eI Þ0, eR=0. We first treat their linear behavior.

In case(i) (4) becomes

ż = Fszd + eRsz0std − zd,

which is a purely dissipative drive, therefore we expect both
linear and nonlinear dissipative terms insI8 ,Fd coordinates.
In action-angle coordinates the dynamics becomes(see Ap-
pendix A),

SḞ

I 8̇
D = S− eR l

0 − eR
DSF

I8
D + S f1sI8,F,eRd

f2sI8,F,eRd
D . s20d

In general,f1 and f2 will be nonlinear functions inI8 andF
and contains both linear and nonlinear terms ineR. It is clear

that the linearized dynamics of(20) is nondiagonalizable
even though linearly stable. A Takens-Bogdanov bifurcation
can occur and, as we will see in Sec. IV, will limit our ability
to control (10) to our desired state. In Sec. IV we will also
discuss the effect of breaking the degeneracy in the diagonal
term of (20).

The solution for the linear dynamics of(20) is:

SFstd
I8std

D = Se−eRt lte−eRt

0 e−eRt DSFs0d
I8s0d

D , s21d

where thet exps−eRtd term represents an effect known as
transient amplificationwhich will be described in Sec. IV.
After the transient amplification, we see exponential decay to
the target on a time scale of 1/eR.

In case(ii ) (4) becomes

ż = Fszd + eIJsz0std − zd,

which in Sec. II was shown to be a conservative drive. When
the drive is periodic and resonant, we expect islands to open
in the phase space centered around our target orbit. It is well
known (see Appendix B) that the width of those islands will
generically be ofOsÎeId. Figure 2 illustrates this.

When eR=0 (the purely conservative case), Eq. (17) be-
comes

SḞ

İ8
D = S 0 l

− heI 0
DSF

I8
D + S f1sI8,F,eId

f2sI8,F,eId
D , s22d

whereh is constant, andf i are nonlinear functions ofsI8 ,Fd,
and in geneneral, contain linear and nonlinear terms ineI and
will be zero at the origin[note that thef i’s will be different
than those in(17) and (20)]. Because we have applied a
conservative controller to our system, the closed-loop dy-

FIG. 2. The island opening around the target at the origin is due
to the presence of a conservative controller in resonance with the
target solution(the origin). HereeI =0.4 andh=1. Notice the large
width of the island,D=OsÎeI).
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namics(22) is also a Hamiltonian system; therefore areas in
the phase space are conserved, and no attractors can be
present. In terms of control, this means that if the system is
in an initial state which is inside the island, then the trajec-
tory “orbits” the target but never settles onto it. Some dissi-
pation must be present in order for control to be achieved.

SettingeR=0 in (19) the linear term of(22) can be solved
to give

SFstd
I8std

D =1 cossÎlheItd Î l

heI
sinsÎlheItd

−ÎheI

l
sinsÎlheItd cossÎlheItd 2

3SFs0d
I8s0d

D . s23d

Hence, we see that the trajectories orbit the target with fre-
quencyÎlheI and never settle on to it. Further, theÎl /heI
term in the off-diagonal entries of(23) show that the island
which is formed is very thin. This can be seen by following
an orbit which starts atfI8s0d=0,Fs0d=DFg. The orbit, cen-
tered about the origin, is elliptical and will intersect theI8
axis whent= t1=p / s2ÎlheId (one-quarter of the period). We
can see from(23), that the orbit intersects theI8 axis atsI8
=−ÎheI /lDF ,F=0d, hence the island is very thinfOsÎeIdg
compared tothe initialDF displacement. However, this is-
land will open up rapidly aseI is increased.

In the next section, we will show that the presence of the
eI terms in the linearized dynamics enlarges the basin of
attraction associated with the Takens-Bogdanov bifurcation
and thus improves the control. In Sec. V we will give an
explicit example of this result using a driven NLS equation.

IV. TAKENS-BOGDANOV BIFURCATIONS

In Sec. III, we showed that, in general, the linearized dy-
namics of an integrable Hamiltonian system becomes nondi-
agonalizable in the limit of no control(eR↓0 and eI →0).
When a system’s linearized dynamics becomes nondiagonal-
izable, a Takens-Bogdanov bifurcation occurs. The interested
reader is directed to the most recent edition of Ref.[9] for a
thorough discussion of Takens-Bogdanov bifurcations and
Refs.[6,7] for a discussion of estimating the distance to the
basin boundary in the subcritical case, and aspects of noise
driven escape in the purely dissipative case. We do not con-
sider the full unfolding of the Takens-Bogdanov bifurcation,
but only those parameter ranges relevant to the present con-
trol problem(i.e., those having a basin of attraction). In par-
ticular, we study the unfolding using the natural parametri-
zation inherited from of our control law rather than that of
Ref. [9] (note that we keep the target fixed at the origin,
while the standard parametrization moves it). In this section,
we will present the information most relevant for our work
here as well as expand upon the results of Refs.[6,7] to
include the conservative term.

We begin by considering the purely dissipative case,eI
=0. We will use (20) as our generic example of a system
exhibiting a Takens-Bogdanov birfurcation. For the situation

of interest here, the Takens-Bogdanov bifurcation involves a
degenerate saddle-node bifurcation in(20) when eR↓0. The
degenerate node at the origin will be the solution of(10)
which is the target for control.

WheneR=0 [Fig. 1(B)], we have a line of neutral stability
which bounds two shear flow regions(I8.0, and I8,0).
When eR becomes greater than zero(Fig. 3) a stable node
appears, denotedO. The effect of the previous shear flow can
still be seen, however, as the trajectories must approach the
node tangentially along the old neutrally stable line with very
slow transverse dynamics. The further a trajectory starts
away from the node the greater the effect of the shear flow
which forces the trajectory to travel further in the horizontal
direction before being attracted to the node. This effect is
known as “transient amplification” since the distance to the
node will typically grow, before the slow decay to the node
sets in. If the diagonal terms of(20) are slightly different
seR1ÞeR2d, Fig. 3 changes slightly because the exact degen-
eracy of the eigenvectors is lifted. However, transient ampli-
fication still occurs since it is due to the linear term being
ill-conditioned [6,12–14].

Provided certain conditions are met(described in Ref.[7])
a saddle-point appears in the neighborhood of the node. In
Fig. 4, we zoom in on the area around the node witheR.0
and we include the nonlinear termsf1 and f2. One-half of the
line of neutral stability becomes one-half of the unstable
manifold sWud for the saddle point, sometimes called the
saddle-sink connection. This piece of the unstable manifold
ends at the degenerate node,O. The other piece of the un-
stable manifoldsWud can lead to another attractor of some
type (not shown). In Fig. 5, we show the full basin of attrac-
tion for the node,O. The saddle point,S, also has a stable

FIG. 3. A qualitative sketch of the dynamics wheneR.0. The
node is denoted by the point,O. The nonlinear terms have not yet
been added. The effect of “transient amplification” is clearly
present. The horizontal line is the old line of neutral stability which
separated the two shear flow regions.

FIG. 4. Illustration of the “triangle relation” of Refs.[7]. The
shortest distance to the basin boundary,sc, is now along some other
direction in the phase space besides the saddle-sink connection.
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manifold sWsd which forms the boundary of the basin of
attraction forO. ExtendingWs typically gives a tear-drop
shaped basin nearO which is one hallmark of a Takens-
Bogdanov bifurcation. Some sample trajectories are included
in Fig. 5 and labeled,Ti. Notice that while one of the trajec-
tories,T1, is attracted directly into the node, the other trajec-
tory, T2, misses the node on its first approach and must travel
in the vicinty of Ws before connecting to the node. There is
only one direction in which a trajectory may approach the
node, along the saddle-sink connection. The tear-drop shape
for the basin comes about because, aseR↓0, the eigenvectors
of the linear dynamics in the vicinity of the saddle become
degenerate(parallel) and, therefore, the angle between the
stable and unstable manifold ofS decreases. The near-
degeneracy ofWu andWs can be seen in Fig. 5.

Due to the shape of the basin of attraction, systems exhib-
iting a Takens-Bogdanov bifurcation are extremely sensitive
to noise and parameter uncertainty[6], and the subcritical
threshold of instability(i.e., the distance to the basin bound-
ary) scales differently from normal saddle-node and Hopf
bifurcations[7]. Both [6] and [7] demonstrate that the dis-
tance to the basin boundary,sc, is proportional toeR

gsg.1d,
whereg can be computed using a simple formula once the
normal form of the dynamics in the neighborhood of the
target is found. A normal form analysis simplifies the dy-
namical system near the target using near-identity transfor-
mations. The normal form reveals which nonlinear terms
govern the topology of the phase space near the target(e.g.,
the location of the basin boundary of the target) and, foreR
@eI (see below), gives the location of the saddle,S. In some
applications, noise may be applied randomly in the phase
space, and thereforesc also gives a noise threshold for in-
stability. However, wheneR↓0 andeI Þ0, the normal form
can give misleading results, as will be shown.

We consider the case in which the controller contains both
dissipative and conservative terms. Our goal is to derive a
subcritical threshold scaling,scseR,eId. We will use a method
similar to that in Ref.[7]. Following our results from Sec.
III, the normal form of our model system to leading order in
the vicinity of the control target is

SḞ

İ8
D = S − eR l

− heI − eR
DSF

I8
D + S 0

b1F2 + b2FI8
D , s24d

where we have chosenlheI .0 andb1,b2 are constants. The
open-loopseR=eI =0d form of (24) is sometimes known as
the Bogdanov form[9]. The nonlinear terms are the generic
dominant terms for a Takens-Bogdanov system[7], found by
casting the open-loop dynamics of(17) into normal form. We
now describe how to estimatesc using the triangle relation
of Ref. [7].

First, find the location of the saddle by settingḞ= İ =0
and solving

FS=
eR

2 + lheI

sb1l + eRb2d
, IS8 =

seR
2 + lheIdeR

slb1 + eRb2dl
. s25d

As in Ref. [7], we see that theF2 term is dominant iflb1
andb2 areOs1d. It is important to note, however, that when
eR=0 andeI Þ0, the dynamics of(24) are diagonalizable and
not degenerate. In this case, the normal form is suspect be-
cause we need to include higher order terms so that we may
correctly describe the location of the saddle and the shape of
Ws. In what follows, we assumeeI !eR.

Second, linearize(24) about the saddle pointsF=FS

+u,I = IS+vd,

Su̇

v̇
D = 1 − eR l

2eR
2

l
+ heI − eR2Su

v
D + S 0

b1u
2D . s26d

The eigenvalues of the linear dynamics are
−eR±Î2eR

2+lheI. This verifies that the second fixed point is
indeed a saddle point(recall, we fixheI .0), for l.0.

Third, find the angle betweenWs andWu in Fig. 4, which
we denote,u. This is done by finding the eigenvectors of the
linear dynamics of(26) and using the cosine relation for the
dot product of the two vectors. It can be shown that

u =
Î2

l
Î2eR

2 + lheI . s27d

Finally, the triangle relation from Fig. 4[7] provides the
estimate

sc < FSu =
Î2

l

eR
2 + lheI

sb1l + eRb2d
Î2eR

2 + lheI , s28d

whereeI !eR. For discussion of the higher order corrections
to (28), see Appendix C. As demonstarted in Appendix C, the
largest source of error in the triangle relation comes from not
including the curvature of the stable manifold in(28). The
triangle relation is the first order term in a Taylor series ap-
proximation of the stable manifold. In Appendix C, we esti-
mate the error in(28) by including the next higher order
terms in the Taylor series approximation. We see from(28)
that in the purely dissipative case,eI =0, sc<eR

3, and we
recover the result from Ref.[7]. Hence,(28) shows that the
presence of a conservative term in the control law increases
sc. This is sketched in Fig. 6. Notice that in Fig. 6 thatsc has
dramatically increased as compared to Fig. 5 and now, the

FIG. 5. A typical basin of attraction for a node undergoing a
Takens-Bogdanov bifurcation. Notice the distinctive tear drop shape
of the basin due to the near degeneracy ofWs andWu.
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node has become a degenerate spiral as demonstrated in(19).
In Sec. V, we will apply the results from this section and

Sec. III to a simple control scheme for a driven nonlinear
Schrödinger equation.

V. CONTROL OF THE NONLINEAR SCHRÖDINGER
EQUATION

The one-dimensional focusing nonlinear Schrödinger
equationsNLSd,

iqt + qxx + 2uqu2q = 0, s29d

governs the envelope dynamics of waves that, to leading
order, are weakly nonlinear, nearly monochromatic, and dis-
persive. Here, we consider solutions of(29) that are periodic
in space[i.e., qsx,td=qsx+L ,td for some box size,L, and we
chooseL=1]. The NLS is used as a model system in many
areas of physics such as plasmas, water waves, and nonlinear
optics. The interested reader is referred to Ref.[15] which
contains many references for applications of the NLS in its
introduction and develops a special class of exact solutions
to the NLS, specifically those associated with modulational
instabilities. Ultimately, we wish to use this special class of
solutions to design control laws for NLS-type systems such
as the Ginzburg-Landau equation[16] and Dysthe’s equation
[17]. The Ginzburg-Landau and Dysthe equations are not
integrable, but NLS appears as a limiting case. It is hoped
that the current work described here will provide insights in
developing control laws for these nonintegrable systems as
well. Such control laws, for example, might be designed to
suppress instabilites or to exploit them for pulse formation.
That work will be reported elsewhere. In what follows(29)
will be our open-loop dynamics.

The NLS is an integrable Hamiltonian system with
Hamiltonian,

H =E
0

1

suqu4 − uqxu2ddx, s30d

whereq* is the complex conjugate ofqsx,td. We restrict our
attention toq,q* that areC`. We consider the set of all such
functions to be our phase space withsq,q*d as dynamical
variables on that space. The phase space variable,q, can be
written as

qsx,td = o
n=−`

`

anstdexps2pinx/Ld, s31d

thus eache2pinx/L define a basis direction in the phase space,
which is infinite-dimensional and has embedded within it
invariantN-tori. The Q-function solutions of Ref.[15] give
explicit representations of the dynamics on theN-tori. In
what follows, we will be interested only inq0sx,td
=a exps2ia2td, thus restricting ourselves to targets that lie on
a one-dimensional invariant torus. This allows a very com-
plete analysis and shows that this control problem is exactly
of the form discussed in Sec. III.

A. The control law

Our goal is to control(29) to some targetq0sx,td which is
an exact solution to(29). We proceed as we did above by
choosing our closed-loop dynamics to be

iqt + qxx + 2uqu2q = iseR + ieIdsq0 − qd. s32d

Note that the presence of thei in front of the control law
keepseR the dissipative part of the control andeI the conser-
vative part as was our convention in Sec. II. This control law
is the same as(4). We chooseeI ,0 so that the target,q0, is
at the center of the island in the conservative limitseR=0d as
discussed in Sec. III.

Equation(32) is a particular example of a driven nonlin-
ear Schrödinger equation and has been studied extensively
by Li et al. [18], Haller [19], and by Li and Wiggins[20] in
the case ofeI =0. This body of work has revealed the rich
geometrical structure that exists in the solution space of the
driven NLS. These authors have extended the finite-
dimensional methods of invariant manifolds, Melnikov
theory, homoclinic tangles, etc., to the infinite-dimensional
solution space of this nonlinear PDE. We, however, will ask
different questions. As stated earlier, our ultimate interest is
to learn how to control physical systems for which NLS-type
dynamics are reasonable models. We will exploit the integra-
bility of the open-loop dynamics to gain insight into geo-
metrical aspects of the control problem. The previously men-
tioned authors found that complex behavior exists
throughout the NLS’s solution space. Our goal is to suppress
this behavior in the neighborhood of certain target solutions.

We consider plane wave, i.e. spatially uniform, solutions
of (29) hence,qxx=0. Fix q0 to be q0std=a exp(2ia2st− t0d)
where a is some real positive constant. For simplicity, we
will choose t0=0. Hence, we first restrict ourselves to the
invariant manifold of plane waves, denoted asPc in Ref.
[18]. Note thatPc is an invariant manifold of the closed-loop
(32) dynamics becauseq0PPc, therefore, if qst=0d is a

FIG. 6. A qualitative sketch of a typical basin of attraction for a
node in a Takens-Bogdanov system with a conservative term
present. Notice how much larger the basin is here, as compared to
Fig. 5 and note also the target point is now astable spiral.
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plane wave, then it will remain so. In what follows, we will
assumeqst=0dPPc.

We ask under what conditions doesq→q0? We will find,
as is demonstrated in Refs.[18–20], that two attracting so-
lutions can exist onPc. For eR@a2 seI =0d, however, the
whole complex plane attracts to the node. We will also show
that the open-loop dynamics of(29) are that of a shear flow
and therefore a Takens-Bogdanov bifurcation occurs at the
targetq0 when the control is applied. As discussed in Sec. IV,
the presence of the Takens-Bogdanov bifurcation means that
as eR↓0, the target has a small basin of attraction in the
purely dissipative caseseI =0d. Thus, only a small amount of
noise [sc<OseR

2d, see below] causes loss of control of the
system when a purely dissipative control law is applied.
Once control is lost, the system settles onto the other attrac-
tor, which is a plane wave of much smaller amplitude. In
Sec. III we explained that the presence of the conservative
term, eI, will cause the basin of attraction forq0 to increase
in size, hence, increasing the controllability of the system. In
what follows we will demonstrate that effect as well. We will
finish our analysis in Sec. VI with a brief discussion of con-
trol of NLS to spatially nonuniform targets. This is still work
in progress and will be treated in a separate paper.

Before we move on, it is worth mentioning that Friedland
has shown that the NLS can be autoresonantly excited
[21,22] and controlled. Autoresonance occurs when a nonlin-
ear oscillating system phase locks to a small amplitude os-
cillating drive with a slow frequency chirp. Autoresonance
results in self-consistent control of the amplitude of the sys-
tem as the drive frequency changes because the driven sys-
tem changes its state in space and/or time in order to phase
lock to the drive. For systems like NLS, where the frequency
is a function of amplitude, this means that phase locking can
be used to manipulate the amplitude without feedback and
using a small gain(coupling), e. In Ref. [21], Friedland and
Shagalov demonstrate that the plane wave state of the NLS
can be autoresonantly excited, and that as the amplitude
reaches a certain threshold, a spatially modulated form arises
and eventually becomes a shape not unlike a soliton. In Ref.
[22], Friedland extends his work to standing waves, and
more recently with Shagalov Ref.[23] has shown how to
excite multiphase solutions of the Korteweg-de VriessKdVd
equation. Our work complements that done in[21–23]: their
work deals with a drive with fixed gain and a frequency
chirp, ours has a drive with a fixed target(no chirp) and we
consider the size of the basin of attraction.

B. Analysis

Restricting ourselves to plane waves and usingq0std
=a exps2ia2td as our control target,(32) becomes

iqt + 2uqu2q = iseR + ieIdsa exps2ia2td − qd. s33d

We begin our analysis by writingqsx,td in the form,
qstd=rstdeiustd (wherer andu are real functions of time) and
subsituting it into (29) to study the open-loop dynamics.
Upon substitution into(29) we get

ṙ = 0,
s34d

u̇ = 2r2.

As shown in Fig. 7(A), (34) describes a shear flow as
expected from Sec. III. We can also transform into coordi-
nates rotating with the target[the bold circle in Fig. 7(A) of
the closed-loop dynamics by settingcstd=2a2t−ustd and
looking at ther−c dynamics as shown in Fig. 7(B) where

ċ=2sa2−r2d. Thus relating the dynamics of NLS to(16).
Next, we analyze the closed-loop dynamics by inserting

our ansatz,qstd=rstdeiustd, into (33) to get

ṙ = eRsa cosscd − rd − eIa sinscd,
s35d

ċ = 2sa2 − r2d −
aeR

r
sinscd −

eI

r
sa cosscd − rd.

Figure 8 illustrates the state space of(35). The variables
are the realfx=r cosscdg) and imaginaryfy=r sinscdg) parts
of q with eI =0 andeR=0.4. The tear drop shaped basin of
attraction,B, for the target,O, is clearly present and is char-
acteristic of the Takens-Bogdanov bifurcation. Notice how
smallB is locally, even though the strength of the dissipation
is quite highseR=0.4d. Physically, this tells us that only a
small region of “nearby” states are controllable to our target.
Worse yet, there is a small noise threshold for instability.
This can be quantified by measuring the shortest distance,
scseRd, between the basin boundary,Ws, and the target,O, in
the negativex direction. The point in Fig. 8 denotedS is a
saddle point whose location will play a crucial role in com-
putingsc as was shown in Sec. IV. The unstable manifold of
the saddle,S, is denotedWu. The point,Q, is a stable spiral
and is associated with a small amplitude plane wave.

In Sec. III we stated that the presence of the conservative
term in the controllerseId will enlarge the basin,B. Figure 9
illustrates this effect. Figure 9 shows the state space of(33)
with eR=0.4 andeI =−0.1. Notice how much largerB is in
Fig. 9 as compared to Fig. 8. The labels in Fig. 9 denote the
same points and manifolds as in Fig. 8. It is interesting to
note that the conservative term need not be large in order for
its effect onsc to be noticeable.

FIG. 7. The dynamics for(34) wheneR=eI =0 are shown in(A),
note that this is a shear flow. The bold circular orbit hasuqu=a. (B)
shows the dynamics of(34) transformed into coordinates rotating
with the target. Notice that(B) is a shear flow with a fixed circle of
netural stability.
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As is implied in Sec. III, the most useful set of coordi-
nates will be the action-angle coordinates. The action can be
found usingsq* ,qd as our dynamical variables,sp,qd, and
integratingp dq around one cycle(noting that the period,
T=2p /v=p /r2) [3,10,11],

I =
1

2p
rp dq=

1

2p
rp

dq

dt
dt =

1

2pi
E

t=0

p/r2

q*2i uqu2q dt= r2.

s36d

We can then rewriteqstd in terms of action-angle coordi-
nates sI ,fd by qstd=ÎI expsifd with the target action,I0

=a2. Using (30) we can rewrite the Hamiltonian,

HsId = uqu4 = I2,

s37d
ḟ = 2I .

In Sec. III, we transformed our angle coordinate into a
new coordinate rotating with the target angle using a gener-
ating function, F2sI8 ,f ,td. Recall that this transformation
does not change the action coordinate. Following similar
arugments presented in Sec. III we find

F2 = sf − 2I0tdsI8 + I0d,

I = I8 + I0,
s38d

KsĨd = HsI8 + I0d − 2I0sI0 + I8d,

F = f − 2I0t.

This transformation is equivalent to substitutingqstd
=wstdexps2ia2td into (33),

FIG. 8. The state space diagram for(35) with
a=1, eI =0, and eR=0.4. The variables arex
=Resqd and y=Imsqd. Notice how the stable
manifold sWsd of the saddlesSd creates the tear
drop shaped basin of attraction,B, for the target,
O. The unstable manifold of the saddlesSd is de-
noted byWu. The large value ofeR was chosen to
accentuate the features of the basin.

FIG. 9. The state space diagram for(33) with
a=1, eI =−0.1, andeR=0.4. Notice that the tear
drop shaped basin of attraction is still present, but
is larger than in Fig. 8. Even thougheI is small
compared toeR, its effect is quite noticeable.
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iwt − 2a2w + 2uwu2w = iseR + ieIdsa − wd. s39d

We can write wstd in terms of action-angle coordinates
wstd=ÎI8 expsiFd, substitute this into(39) and expand about
the target,I8=a2+y andF=0+x to get

Sẋ

ẏ
D = 1 − eR 2 −

eI

2a2

2eIa
2 − eR

2Sx

y
D +1

eI

2
x2 −

3eI

8a4y2 +
eR

2a2xy

− eRa2x2 −
eR

4a4y2 + eIxy2 ,

s40d

note thatsx,yd are now linearization variables and not the
variables from Fig. 8. Further, note that from Sec. IV, we
know that thex2 term in the ẏ equation is the dominant
nonlinearity. After performing a near-identity transformation,
the normal form of(40) is

Sẋ

ẏ
D = S − eR 2

2eIa
2 − eR

DSx

y
D + S 0

− eRa2x2D + . . . . s41d

Note, the near-identity transformation does not effect the
leading order(in terms ofeR andeI) nonlinear terms. Further,
we notice that in order for an island to open around the
target,eI must be negative becauseh=2a2.0. From now
on, we insert the negative sign explicitly. In this case, the
bifurcation is exactly as discussed in Sec. IV.

Next, we find the position of the saddle:

xS= −
eR

2 + 4a2eI

2a2eR
, yS= −

eR
2 + 4a2eI

4a2 , s42d

and we enforce,eI !eR, for the reason discussed previously.
Following Sec. IV, the next step is to find the dynamics of
(41) linearized about the saddle withx=xS+u and,y=yS+v,

Su̇

v̇
D = S − eR 2

eR
2 + 2a2eI − eR

DSu

v
D . s43d

Next, we find the angle,u, between the eigenvectors of(43).
Using the formula foru from Sec. IV, we find that

u =
Î2

2
Î2eR

2 + 4a2eI , s44d

hence, using the triangle relation we find

sc < uxsuu =
Î2

2

eR
2 + 4a2eI

2a2eR

Î2eR
2 + 4a2eI , s45d

whereeI !eR. The higher order corrections are developed in
Appendix C. We see that the basin boundary in the purely
dissipative case is only a distance ofOseR

2d away (because
for NLS b1=−a2eR). In standard saddle-node bifurcations,sc
scales likeOseRd. In Fig. 10, we compare the results for
finding sc using the triangle method with the results from an
approximation of the stable manifold using higher order
terms in the Taylor series expansion(see Appendix C for
more details) for the purely dissipative case. Figure 10 plots
the difference between the numerical value ofsc and the
value estimated by each of the two methods. The numerical
value ofsc is found by computing where the stable manifold

intersects thex axis of the state space(similar to Fig. 8). It is
important to note that the equations integrated for Fig. 10 are
not (40), but rather the equations of motion for the real and
imaginary parts of(33). For more details on this, please con-
sult Appendix D. Figure 10 shows that the error in both
methods converges to zero, however, the manifold approxi-
mation method does so much more quickly. Even though the
normal form analysis is performed in the limiteR→0 and,
hence, the predictions are only valid in this limit, Fig. 10
shows the purely dissipative scaling ofsc<eR

2, predicted by
the triangle relation, is good for a large range ofeR’s.

VI. CONCLUSIONS

We have shown that when attempting to control an inte-
grable Hamiltonian system to one of its exact solutions a
succesful control law will contain both dissipative and con-
servative terms. One source of the difficulty for control is the
degenerate shear flow structure inherent to these systems.
The shear flow sets up a Takens-Bogdanov bifurcation which
leads to the small basin of attraction for the control target.
The presence of the conservative term enlarges the basin and
therefore improves the controllability of the system. Success-
ful control laws for integrable Hamiltonian systems are ones
which are more conservative than dissipative, but dissipative
terms must be present in order for the system to settle onto
the control target and must be strong enough to allow for a
relatively short decay time.

Selection of the NLS to illustrate our results was more
than a choice of convenience. We plan to use the insights
gained in controlling NLS to develop control laws for non-
integrable systems related to NLS: the previously mentioned
Ginzburg-Landau and Dysthe’s equation serve as examples
of such systems. These NLS-like systems contain physical
phenomenon which destroys the integrability. Such control
laws may suppress or excite pulse formation in the system,

FIG. 10. Relative error in predictingsc. The triangles denote the
error using the first order Taylor(i.e., triangle relation) approxima-
tion of sc and the squares denote the error using the second order
Taylor approximation ofsc. Here, relative error means the magni-
tude of the difference between the numerical result ofsc and thesc

predicted by the two methods of approximation.
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for example. We have had success in controlling both
Ginzburg-Landau and Dysthe’s equation to NLS targets,
therefore we know that studying integrable Hamiltonian
models has relevance to the development of control laws for
nonintegrable systems. These targets are spatially nonuni-
form and are theu-function solutions from Ref.[15]. This
work is still incomplete and will be presented elsewhere. The
high dimensionality of these systems makes detailed analysis
difficult and led to our thorough study of the plane wave
presented here.

Future work in this area could include studying the con-
trol of integrable Hamiltonian systems withN degrees of
freedom (2N-dimensional). The behavior of higher dimen-
sional systems has the potential to be much more complex
than the case studied in this paper. To illustrate this, consider
a 2N-dimensional integrable Hamiltonian system with
Hamiltonian,HsI d, where I PRN. As in Sec. III, we trans-
form to a coordinate system which fixes some target solution,
sI 0,f0d, at the origin. The Hamiltonian now becomes

KsI 8d = 1
2I 8 ·C · I 8 + hsI 8d, s46d

where we have ignored the constant terms,h contains terms
of OsI 83d and higher, and theN3N matric,C, is the Hessian,

Cjk ; U ]2H

] I j8 ] Ik8
U

I 0

. s47d

BecauseC is a real symmetric matrix, we can diagonalize it
with a similarity transformation using a rotation matrix,R.
This leads to the new system,

K8sAd = 1
2A ·D ·A + h8sAd,

D = diagsl1,l2, . . . ,lNd,
s48d

Ȧk = 0,

Q̇k =
] K8sAd

] Ak
,

where k=1, . . . ,N, sA ,Qd are the new coordinates, and
l1, . . . ,lN are the eigenvalues ofC. After reordering the ba-
sis, the new equations of motion are

1
Q̇1

Ȧ1

Q̇2

İ2

A

Q̇N

ȦN

2 =1
0 l1 0 0 0 ¯ 0 0

0 0 0 0 0 ¯ 0 0

0 0 0 l2 0 ¯ 0 0

0 0 0 0 0 ¯ 0 0

A A A A A � A A
0 0 0 0 0 ¯ 0 lN

0 0 0 0 0 ¯ 0 0

21
Q1

A1

Q2

I2

A
QN

AN

2
+1

g1sAd
0

g2sAd
0

A
gNsAd

0
2 , s49d

where thegi contains terms ofOsA2d and higher. The system
of equations (49) are the open-loop dynamics for an
2N-dimensional integrable Hamiltonian system whose origin
lies at the control target. The linear term of(49) is separated
into N noninteracting subspaces whose dynamics are those of
a shear flow, as expected. This potentially leads to Takens-
Bogdanov bifurcations of very high dimensionality. Know-
ing how the target’s basin scales(after control is applied) is
crucial for understanding the control of the higher dimen-
sional systems. The high dimensionality makes an analysis
which is similar to that done in Sec. IV difficult. Hence this
problem is still open to study.
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APPENDIX A: THE TRANSFORMED CONTROL LAW

Consider(4),

ż = J=zHszd + e · sz0std − zd, sA1d

wheree=eR1+eIJ. We transform to a new set of coordinates,
Z PR2N, via a time dependent transformation onz=zsZ ; td
such thatZs0;td=z0std. We first findŻ =dZ /dt following an
arbitrary orbit zstd=zsZstd ; td. Define the Jacobian of the
transformation to be

Mki ;
] zk

] Zi
, sA2d

and note thatM =MsZ ; td. Further, we denote the Jacobian
following the target orbit asM0std=Ms0;td. We also assume
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that the transformation is smooth and invertible[i.e.,
detsMdÞ0 for all Z andt]. The time derivative ofz becomes

dzk

dt
=

] zk

] Zl

dZl

dt
+

] zk

] t
,

sA3d

ż = MŻ +
] z

] t
,

where summation over repeated indices is implied. Equation
(A3) holds for any orbit. Note that sinceZ =0 is a fixed
point, we have

ż0 = U] z

] t
U

sz=0;td
. sA4d

The gradient transforms as

]

] zk
=

] Zm

] zk

]

] Zm
. sA5d

Therefore,

Jkl
]

] zl
= Jkl

] Zm

] zl

]

] Zm
. sA6d

Noting thatMml
−1=]Zm/]zl and substituting the above results

into (A1) we get

Ż = M−1JM̃−1=ZH„zsZ ;td… − M−1] zsZ ;td
] t

+ M−1 · e · „z0std − zsZ ;td…, sA7d

whereM̃ denotes the transpose ofM.
The equation(A7) is true for a general coordinate trans-

formation. In particular, we are interested in canonical trans-

formations. In canonical transformations,MJM̃=J for all Z
and we say thatM is symplectic. Because the set of symplec-
tic matrices form a group, the symplectic condition also
holds forM−1 for anyM in the symplectic group. We further
note that from the theory of canonical transformations[11],
the M−1]z/]t term can be recast in Hamiltonian form and

the open-loop dynamics written asŻ =J=ZKsZ ,td for some
new time dependent Hamiltonian,K. What interests us most
is the form of the control terms(with control gaine) under
the transformation. We find this by Taylor expandingzsZ ; td
about the target,z0,

zsZ ;td = z0std + M0std ·Z + OsZ2d,

MsZ ;td = M0std + OsZd, sA8d

M−1 = M0
−1std + OsZd.

The control term then becomes

M−1 · e · sz0std − zsZ ;tdd = − M0
−1 · e · M0 ·Z + OsZ2d,

M0
−1seR1 + eIJdM0 = eR1 + eIM0

−1JM0 = eR1 + eIJM̃0M0,

sA9d

where we have used the symplectic condition to write

M0
−1J=JM̃0.

If we defineS0std=M̃0M0, (A7) becomes

Ż = J¹ZKsZ ;td − eR1 ·Z − eIJS0std ·Z + OsZ2d,

sA10d

as quoted in the text.

APPENDIX B: DERIVATION OF THE ISLAND WIDTH
FOR CONSERVATIVE CONTROL

The typical scaling of the island width with purely con-
servative control can be most easily demonstrated by ex-
ample. Consider a nonlinear one-dimensional Hamiltonian
system with Hamiltonian

H = 1
2I2 + hsId, sB1d

wherehsId contains terms ofOsI3d and higher. In this system,
the target oribit issI =0,f=v0td. We add a general conser-
vative perturbation, which is periodic and resonant with the
target:

K8sI,fd = 1
2I2 − aeI cossfd + hsId, sB2d

the appearance of the minus sign in front of the cosine term
ensures that the island opens at the target, as explained in the
text. It is easy to verify that the fixed points for the system
with Hamiltonian, K8, are at sI =0,f=npd for n
=0,1,2, . . . .Figure 2 illustrates the phase space for our con-
trolled system(B2), while Fig. 1(B) shows the open-loop
dynamics for this system. The value ofK8 along the separa-
trix is given by its value at the saddle point,K8s0,−pd=aeI.
Therefore, along the separatix

1
2I2 − aeI cossfd = aeI . sB3d

Solving (B3) for ISsfd, the actionISsfd is at a maximum
whenf=0, therefore it is easy to solve for the width of the
island,D<OsÎaeId.

APPENDIX C: HIGHER ORDER ESTIMATES OF sc

In this appendix, we will examine an approximate equa-
tion for the stable manifold of the saddle in order to obtain
an error estimate for(28) and for (D9). This will be done
using a Taylor approximation for the stable manifold of the
saddle. In Sec. IV, we mentioned that the triangle relation is
a first order Taylor series approximation for the stable mani-
fold. The first order Taylor approximation is, of course, a
striaght line. As can be seen from Fig. 8, the stable manifold
has a curvature to it which requires higher order terms in the
Taylor approximation for a more accurate measurement of
sc. We will see that while the triangle relation does not take
into account this curvature, it still yields the correct leading
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order dependence ineR for sc. For simplicity, we will con-
sider only the purely dissipative caseseI =0d.

1. Approximation of the stable manifold of (24)

Recall that our generic two-dimensional dynamics about
the target are

SḞ

İ8
D = S− eR l

0 − eR
DSF

I8
D + S 0

b1F2 + b2FI8
D . sC1d

Finding an approximate equation for the stable manifold of
the saddle is the same as finding an approximate equation for
I8sFd near the saddle point. Hence, we are interested in solv-
ing the equation

FsF;I8d ;
dI8

dF
=

− eRI8 + b1F2 + b2I8F

− eRF + lI8
, sC2d

for I8sFd. We can think ofFsF ; I8d as a function of the
angle,F, parametrized by the actionI8. The stable manifold
will be a curve,I8sFd, which passes through the saddle point
in the direction of the saddle’s stable eigenvector.

Next, we approximateI8sFd by a quadratic polynomial
(Taylor series to second order),

I8sFd < a1 + a2F + a3F2. sC3d

We insert the approximation into the left-hand side of(C2)
and Taylor expand the right-hand side of(C2) about the
saddle,

a2 + 2a3 = −
s2lb1 + eRb2deR

slb1 + eRb2dl
−

b1

2eR
F. sC4d

By equating terms of similar powers ofF gives

a2 = −
s2lb1 + eRb2deR

slb1 + eRb2dl
,

sC5d

a3 = −
b1

2eR
.

The terma1 is found by observing that

IS8sFSd = a1 + a2FS+ a3FS
2, sC6d

this gives

a1 =
2eR

3

sb1l + eRb2dl
7lb1 + 4b2eR

4sb1l + eRb2d
. sC7d

We can approximatesc by finding where the stable manifold
intersects theF axis (see Fig. 11 below, where locally thex
coordinate is analagous toI8 and y is locally analagous to
F). Hence,

sc < a1 =
2eR

3

sb1l + eRb2dl
7lb1 + 4b2eR

4sb1l + eRb2d
. sC8d

We see that(C8) is written in the formsc<sc
s0dgseRd, where

sc
s0d is the noise threshold given by the triangle relation. Im-

mediately, we see that the triangle relation gives the correct

parameter dependence(in eR). The multiplicative constant
not present in the triangle relation results is due to the cur-
vature of the stable manifold and does not change the leading
order parameter dependence. For a clarification of this, see
Fig. 11 below. We can systematically improve this estimate
by including more terms in the Taylor expansion(C3). Next,
we will computesc for the NLS problem.

2. Manifold approximation for NLS

We will use the equations developed in Appendix D to
derive an approximation of the saddle’s stable manifold. We
begin with the equations,

ẋ = eRsa − xd + 2ysx2 + y2 − a2d, sC9d

ẏ = − eRy − 2xsx2 + y2 − a2d, sC10d

where (C9) and (C10) describes the time evolution of the
real sxd and imaginarysyd part of q in (33). The location of
the saddle in this coordinate system is

SyS=
eR

2a
,xS=

a2 + Îa4 − eR
2

2a
D . sC11d

We are interested in finding a curvexsyd which approximates
the stable manifold. As in the eariler case, we study the ratio

Fsy;xd ;
dx

dy
=

eRsa − xd + 2ysx2 + y2 − a2d
− eRy − 2xsx2 + y2 − a2d

. sC12d

We will approximate the stable manifold with a quadratic
polynomial,

xsyd < a1 + a2y + a3y
2. sC13d

The coefficientsc2 andc3 can be using the method outlined
above. We can see from Fig. 8 thatsc lies approximately

FIG. 11. The state space of(C9) and(C10) near the target. The
straight line is the approximation of the stable manifold used by the
triangle relation.
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along thex axis. Therefore, the most important term in the
approximation will bec1. We findc1 by evaluating(C13) at
the saddle point,

c1 < a −
5

18a3eR
2 + OseR

4d + ¯ . sC14d

Because we approximatesc as lying along thex axis, sc
<a−c1,

sc <
5

18a3eR
2 + OseR

4d + ¯ . sC15d

We see that just like in the generic case, we have a multipli-
cative correction to the leading order term due to the curva-
ture of the stable manifold(see Fig. 11). Figure 11, shows the
state space of(C9), (C10) near the target. The curveWs is the
stable manifold of the saddle,S, andWu is the unstable mani-
fold which connects the saddle to the target,O. The straight
line is the approximation of the stable manifold used by the
triangle relation, a first order Taylor approximation ofWs.
The second order Taylor approximation ofWs is indistinguis-
able from Ws at this scale. We see immediately that(D9)
gives the correct scaling(as shown in Fig. 10) for sc, but
(45) is off by a constant. This can be seen by noting the scale
of the x axis in Fig. 11. In fact,(D9) is slightly less than the
true value ofsc (which is whereWs intersects thex axis)
mainly due to the curvature ofWs. While this plot is gener-
ated with a specific value ofeR=0.1, the shape of the mani-
folds is characteristic of this unfolding of the Takens-
Bogdanov bifurcation.

APPENDIX D: FINDING sc USING THE REAL AND
IMAGINARY PARTS OF (33)

In this section, we will present the equations and the
analysis used to develop the numerical results of Fig. 10. In
Sec. V, we choose to use action-angle coordinates because it
mirrors the analysis done in Sec. IV. However, the more
familiar coordinates of Resqd and Imsqd provide more insight
into the physics of the problem. Thesc used in Fig. 10 is the
one computed below. We will see that both(45) and (D9)
have the same scaling ineR.

We begin by subsitutingqstd=rstdeis2a2t−cstdd into (33),

ṙ = eRsa cosscd − rd − eIa sinscd, sD1d

rċ = 2rsa2 − r2d − eIsa cosscd − rd − eRa sinscd. sD2d

These equations now describe the system in a frame rotating
with the target solution. However, note that the target is not
at the origin, it is atsr=a,c=0d. Next, we transform to
Cartesian coordinates,x=r cosscd, y=r sinscd,

ẋ = eRsa − xd − eIy + 2ysx2 + y2 − a2d, sD3d

ẏ = − eRy + eIsa − xd − 2xsx2 + y2 − a2d. sD4d

The equations(D3) and (D4) are the equations from which
we will derive sc. The target is located atsx=a,y=0d. For
the purposes of Fig. 10, we will be only interested in the
purely dissipative case. Hence, we will seteI =0. Next, we
will compute the normal form about the target to second
order (including theeR terms) with y=b1 andx=a+b2,

Sḃ1

ḃ2

D = S− eR 4a2

0 − eR
DSb1

b2
D + S− 2ab1

2

4ab1b2
D + . . . . sD5d

We can solve for the location of the saddle using(D5),

Sb1S=
eR

4a
,b2S=

3eR
2

32a3D . sD6d

Next, we linearize(D5) about the saddle,b1=b1S+a1, b2
=b2S+a2,

Sȧ1

ȧ2
D = 1− 2eR 4a2

3eR
2

8a2 0 2Sa1

a2
D + . . . . sD7d

The angle,u, between the eigevectors of the linear part of
(D7) can be shown to be,

u =
eR

Î3

4a2 . sD8d

Finally, using the triangle relation,sc=b1Su, we find

sc <
eR

2Î3

16a3 + ¯ , sD9d

where the error terms have been computed in Appendix C
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