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Control of integrable Hamiltonian systems and degenerate bifurcations
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We discuss control of low-dimensional systems which, when uncontrolled, are integrable in the Hamiltonian
sense. The controller targets an exact solution of the system in a region where the uncontrolled dynamics has
invariant tori. Both dissipative and conservative controllers are considered. We show that the shear flow
structure of the undriven system causes a Takens-Bogdanov bifurcation to occur when control is applied. This
implies extreme noise sensitivity. We then consider an example of these results using the driven nonlinear
Schrédinger equation.
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I. INTRODUCTION tions, when a time-dependent controller is applied to the in-
tegrable twist-map global controllability can be attained for
In the last several years there has been a lot of interest ithe system. In other words, the system can be controlled
improving the methods for the control of nonlinear physicalfrom any initial state to any final state. Although their work
systems. Due to the large variety of behaviors which nonlindeals with maps and not flows, this demonstrates that global
ear systems display, a single control theory which can beontrollability can arise when time-dependent controllers are
applied to all nonlinear systems will be very difficgit not  applied to flows.
impossiblg to develop. It seems likely that the best way to  The paper is organized as follows. In Sec. Il we will begin
approach the control of nonlinear systems is to learn how taqvith some general remarks on integrable Hamiltonian sys-
control classes of systems instead of trying to develop ongems and present our control law of interest. In Sec. lll we
single all-encompassing theory. For example, in Rgfcon-  will study our control law when applied to an integrable
trol of Euler-Lagrange systems, which encompass a veryamiltonian system with one degree of freedom. We will see
large class of nonlinear physical systems, are considerethat the degenerate shear flow dynamics inherent to an inte-
Similarly, the work reported here restricts itself to a particu-grable Hamiltonian system will cause a Takens-Bogdanov
lar class of physical systems: those which are well modele®ifurcation when control is applied. In Sec. IV we will dis-
by integrable, or near-integrable, Hamiltonian dynamicalcuss some aspects of the theory of Takens-Bogdanov bifur-
models. Finite dimensional examples of integrable systemgations and their implications for robust control of the sys-
are linear oscillators and certain systems of nonlinear osciltem. Section V contains a detailed example which uses a
lators. Examples in infinite dimensions includes soliton sysdriven NLS to illustrate the results of Secs. Ill and IV. Fi-
tems such as the Korteweg-de Vrig&dV), nonlinear nally, in Sec. VI we will conclude with some ideas for future
SchrédingefNLS), and sine-Gordon equations. In particular work in the area.
we are interested in studying the interplay of dissipative and
conservative terms as a means to control integrable Hamil-
tonian systems. Toward this end, our strategy is to use a
known exact solution as a target by turning it into an attrac-
tor, which cannot exist in the original Hamiltonian dynamics.  Consider the following system of ordinary differential
It is hoped that the knowledge gained from developing conequationg ODES:
trol laws for integrable Hamiltonian models that are simple
to use, and robust to perturbations, will provide insights for z=F(2), (1)
?:;jlocﬂl?ﬁiscgggglr Igvzﬁ;?\r,\,;eear: ghges’éﬁ:nsgi;tﬁgi'r;h;rr:fgﬁmherez,F e RN andz are the “Iab_” coordinates, unders_tood
ler is applied to integrable Hamiltonian systems, a highlyaS the “natural” physical coordma}es. The systety is
. . ’ .“known as the “open-loop?or undriven/uncontrolled dy-
degenerate b|furr]qar:|on kn0\|/vn|_a§ a gakens—Bltljgt()j.ialmov]c br']furﬁamics.
cation occurs which severely limits the controllability of the : o _
system. As an example, the results described in Secs. -1V In this paper, we specialize #(z)=JVH where

II. INTEGRABLE HAMILTONIAN SYSTEMS AND
CONTROL

are then illustated on the nonlinear Schrodind¢S) equa- 0 1

tion. The NLS is integrable in the Hamiltonian sense and is a J= (_ 1 O)’ 2
model system used to study phenomenon in plasmas and

nonlinear optics and a variety of other fields. and the 0’s and 1's arld X N zero and identity matrices and

Here it is worth mentioning that Vaidya and MéZi2] H(z) is the Hamiltonian, a scalar function af The system
have studied the controllability of a class of area-preservingl) is calledintegrableif there existsN first integrals of(1)
twist maps. These twist maps are one-dimensional integrablhich are independent and in involution. If the level sets of
Hamiltonian systems. They show that, under certain condithe integrals are compact, then regions of the phase space are
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locally foliated by invariant manifolds with the topology of (4) generates symplectic maps in the caseggf0 (i.e., it
N-tori [3]. In what follows, we assumél) is an integrable generates time dependent canonical transformatidihe or-
Hamiltonian system and we study the control (@ on a  bits nearzy neither attract tazy nor repel away from it and
typical (though arbitrary invariant torus in its phase space. the controller is conservative.

Consider a particular solution @), zy(t), which lies on In Appendix A, we show that in the neighborhoodzgft)
one of those tori{zo=F(zy)]. We now apply a controller (4) can be rewritten in terms of a new set of canonical vari-
which targetszy(t), ables,z,

z=F(z) + €f(zp,2), (3)

wherezy(t) e R?N andf is a 2N-dimensional vector such that Z=JV,K(Z,1) - erZ - IS(HZ +O(Z?), (9
f(zg,29)=0. The control couplinggain), €, is a 2N X 2N ma-
trix whose entries need not be small. In principle, the control

law f can also involve the past history =fft) (i.e., feedback whgre SO(t)h!s a symmetric dmart]rix an(ﬂ?f.is anew Hamil-
The equation(3) will be called our “closed-loop{or driven/ tonian. In this paper we study the specific case in wigigh

controlled dynamics. Note that the control is applied in the IS constant. The presence of nonconst&t) complicates

“physical coordinates, ¥(t). the analysis and is beyond the scope of this paper. As we will
Our problem is: How do we choodeso that the given show, the presence of a constatt) is already a serious

“target” orbit, z,, in the open-loop dynamics becomes ancomplication in terms of nonlinear analysis of the control

attractor in the closed-loop dynamics? By adding the controll@W- In Sec. V, we will see that this simplificatigof a con-
ler, f, we are locally breaking up the tori and stabilizing one St2ntSy(t)] holds for the nonlinear Schrédinger equation.

particular orbit. The goal of our work is to turn the target orlag(t) into
One choice forf is simply an attractor. We wish to understand the geometry of the at-
) tractor basin and the topology of nearby orbits. Doyon and
z2=F(2) + € (2y(t) - 2), (4 Dubé[5] demonstrate targeting periodic orbits of a particular

where e is the real A X 2N matrix, e=egl+¢J, “1” is the period,m, in Hamiltonian systems when the location and the

2N X 2N identity matrix, and(eg, €) are real constants with Stability are unknown and the dynamics of the system are
€x>0. As we will show, this form of control can, for large chaotic. Our work complements this result in that we will be

enougheg, lead to synchronization afto our target orbitz, S‘“dy"_‘g the consequences of using bqth d?ssipative and con-
[4]. Notice, servative cpntrol for.e_m integrable Hamiltonian system_onto a
known orbit. In addition, we focus on the local question of
€= (k- €)1+ 2¢ €], (5)  the closest distance to the basin boundary of our new attrac-
tor. This distance strongly depends upon whether the control
is conservative or dissipative. Note that there is no true
meaning of distance in phase space, hence by that term we
mean the typical noise level which would destabilize the
target. We will show that, due to the shear flow structure
inherent to integrable Hamiltonian systems, something
A, known as a “Takens-Bogdanov” bifurcation generically oc-
S, = _ curs when control is applied. As we will see, the appearance
82=J909z~ erd2, ©® of a Takens-Bogdanov bifurcation implies that the evolution
whereS(t) is a symmetric R X 2N matrix and involves the of the system will be very sensitive to noise and parameter
Hessian of the Hamiltonian evaluated on the target @it uncertainty[6,7] in the purely dissipative limit o{4). We

therefore(eg, €/) act like real and imaginary parts of a com-
plex scalar gain under matrix multiplication ef

We can study the nature of the control |&4y by perform-
ing a linear analysis about the targeg(t). Supposez
=z4(t)+6z(t) and insert this into our closed-loop dynamics

PH will also see that by turning on the conservative part of the
Sk(t) = - &0k, (7)  drive, g, the controllability is improved.
92 9% z=z41) It should be pointed out that Haberman and }8p have

studied dissipatively perturbed Hamiltonian systems in a re-
. o gime which contains two competing centévehich become
of gl and =0, (6) becomesdz=-ezdz. This gives  atiractors once the dissipation has been “turned sepa-
§z(t) ~ e R52(0) which shows that in the limit 0&=0the  ated by a saddle in the phase space before the perturbation is
control law in(4) is purely dissipative and(t) ~zo(t) on @ applied. Their Hamiltonian system is a nonlinear oscillator
time scale ofO(eg ™). where the drive frequency is negor af the natural fre-
Now consider the case wheeg=0. For short timegi.e.,  quency of the system. Although the phase space topology
t—t+h) St) can be considered as a constant matrix @d they study is similar to ours, we are asking different ques-
integrates to tions. Their work is concerned with deriving an analytic form
- for the stable manifold of the saddlbasin boundaryusing
d2(t+h) =exeh) S52(v). ® asymptotic methodgonce small dissipation has been ap-
It is known from the theory of Lie groups] that the matrix  plied). The work presented here is concerned with the ge-
M(t+h,t)=exp(hJSt, g)) is a symplectic matrix as long as neric properties of both dissipative and conservative control
Sis symmetric, which it is by(7). Hence, the control law in laws applied to a general integrable Hamiltonian system.

and gj is the N X 2N Kronecker delta function. In the case
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do(t) = wot + & (12

with § being an arbitrary angle between 0 and and wg
:aH(I)/aI|,O. Without loss of generality, we will se=0.
After choosing a target, we transform into a canonical coor-
dinate system where the target is fixed at the origin, using a
time dependent canonical transformation. This puts the target
orbit at rest at the origin. We then turn on the controller
which converts the origin into an attractor. We will find that
applying the controller results in what is known as a Takens-
0 m X @ T Bogdanov bifurcation[9]. The presence of the Takens-
(A) o B) Bogdanov bifurcation has an important effect on our ability
to control the system to the target. Further, we will see that as
FIG. 1. (A) shows the flow field of the open-loop dynamics of the control becomes more conservative., ase/ eg] ), the
(11). (B) shows the flow field of the open-loop dynamics of the controllability, as measured by the minimum kick required to
transformed coordinate systefh6). Notice that the linear part of ~destabilize the target, is greatly improved even whgh
(16) has only one eigenvector which lies along the line of stagna- ¢? is fixed. However, there is a tradeoff: while a large

tion (1'=0). and smalleg may produce a large basin of attraction it will
also have a long decay time to the target.
Ill. HAMILTONIAN SYSTEMS WITH ONE Let's choose our target to bé=1, and ¢=¢y(t) with ¢
DEGREE OF FREEDOM defined as above. We perform the previously mentioned ca-

. I . nonical coordinate transformation using the generating func-
Consider a Hamiltonian system with one degree of freey;, [10,17 Fy(I, b, = (= awot) (1" +1o) with

dom and HamiltoniatH=H(q, p), with q,p € R. The evolu-

tion of p andq is dictated by the canonical equations, | = dF; 14
Y o
. _dH(p.9
BRI o=""2= 5 0y (13
(10) BTG
_JdH(p,9)
B ’ JF
o4 KA =H(" +10) + =2 =H( +10) = (1 +lg)wx.

Suppose that for this system, the Hamiltonian has regions ) ,

with compact level sets, implying there are regions of theNc_’t‘? that this transformation places the control target at the
phase space which are foliated by circléstori) [3]. These ~°rigin, (I",®)=(0,0). _ S

circles are invariant under the flow generatedHiyp,q). On Now we examine the dynamics about the origin via Tay-
a given family of these tori, the coordinatés,q) can be lor exapansion of the new Hamiltoniak(l’) about the tar-

canonically transformed to the action-angle coordinate9€t

(I, ¢) and the Hamiltonian can be written &&p,q)=H(l). JH 1 #H )
The evolution of(l, ¢) is of the form K(1") =H(lp) + P10 I’ I IS4 - =(lg+1") .
lo lo
=0, (14)
(11)  Next, we ignore the constant ternt$(l,) and wgly, and col-
b= JH() 0 lect terms ofO(1’3) and higher into a functioh(l’),
- = w .
al
A
K(I’):EI’2+h(I’). (15)

In these coordinates the dynamicg(d1) looks locally like a
shear flow with each neighboring torus having a slightly dif- This Hamiltonian gives the following equations of motion:
ferent(constany rotation rate(see Fig. 1. The evolution of .
the action-angle variables is quite simple, making them the @) (0 N[O f(1')
natural coordinates for this region of the phase space. It is " “\o o/\I’ * 0o /)
important to keep in mind, however, that the evolution in the
original (p,q) coordinates, although periodic, can be quitewheref(I’)=dh/dl’ is O(1'?). The equatior{16) is our open-
complicated. loop dynamics and describes a shear flow with the eftire
The system(10), or equivalently(11), will be our open- =0 line fixed. Figure 1 shows the flow field of the dynamics
loop dynamics for control. The technique used to controlof (11) and(16). Such shear flow dynamics, characterized by
(10) is simple. First we must choose some target orbit ofa degenerate linear term, are the setting for a Takens-
(10), (Ig, ¢o), Where Bogdanov bifurcatiorf7].

(16)
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Next, we examine the closed-loop dynamics. Reg3ll
z2=F(2) + (gl + €)(zo(t) - 2),

with F(z)=JVH(z) and zy(t) is a solution to the open-loop
dynamics(eg=¢€,=0). While the second term of the RHS of
(4) is linear in the “physical coordinateg=(p,q) it will, in
general, contain nonlinear termszr(l’,P) due to the non-
linear nature of the transformation frofp,q) to (I’,®). Us-
ing (16) and the results from Appendix A, we can always
write the dynamics in the following fornjpossibly after a
near identity canonical transformation @i, ®)]:

P

()= 200

I.!
where thee notation inf; refers to botheg ande,. The minus

N

- €

f1(1",®se)
fo(I", @€

€R
- M€

>, (17)

sign in front of theg; term ensures that a center opens up at

the targetiwhen the produch ne, >0), as will be discussed
below, and

f2(17,@;0) = (1) + ef (1", D; ),
(18)
f,(1",®;€) = ef (1", D €).

The general solution to the linear dynamics(d7) is:

(q)(t))
1/ » sin(VA ngt)
7€

1'(t)
- e—ERt
€ . ~ ~
-1/ % sin(VA 7¢t) cogVAnet)

(2]

1'(0)

cogVAnet)

(19

Hence, we can see that the system undergoes a decayiﬁ%

oscillation which will eventually settle onto the targetri-
gin) with a decay time scale dd(1/eg) and oscillation pe-
riod O(1/Ve).

The nonlinear behavior of systems with linear degeneracy

PHYSICAL REVIEW E70, 016205(2004)
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FIG. 2. The island opening around the target at the origin is due
to the presence of a conservative controller in resonance with the
target solutionthe origin. Here¢=0.4 and»=1. Notice the large
width of the islandA=0( ).

that the linearized dynamics aR0) is nondiagonalizable
even though linearly stable. A Takens-Bogdanov bifurcation
can occur and, as we will see in Sec. IV, will limit our ability
to control (10) to our desired state. In Sec. IV we will also
discuss the effect of breaking the degeneracy in the diagonal
term of (20).

The solution for the linear dynamics ¢20) is:

-{57 2 ).

I(t) 1'(0)

where thet exp(—egt) term represents an effect known as
nsient amplificationwhich will be described in Sec. IV.
er the transient amplification, we see exponential decay to
the target on a time scale of d4.

In case(ii) (4) becomes

e eRt \te™ ert

0

(21)

e eRt

2=F(2) + J(z0(t) - 2),

can be subtle. To develop an idea of how each term in the

closed-loop dynamicsgpurely dissipative and conservatjve
behaves, we consider two limitgi) eg# 0, =0, and(ii)
g # 0, eg=0. We first treat their linear behavior.

In case(i) (4) becomes

2=F(2) + r(z0(t) - 2),

which in Sec. 1l was shown to be a conservative drive. When
the drive is periodic and resonant, we expect islands to open
in the phase space centered around our target orbit. It is well
known (see Appendix Bthat the width of those islands will
generically be of0(\¢). Figure 2 illustrates this.

When eg=0 (the purely conservative cayeEq. (17) be-

which is a purely dissipative drive, therefore we expect botH0Mes

linear and nonlinear dissipative terms(ir,®) coordinates.
In action-angle coordinates the dynamics beco(ses Ap-

e e

(l"
In general,f; andf, will be nonlinear functions in’ and®
and contains both linear and nonlinear termgdnlt is clear

A

- €r

f1(I", D, ep)
fz(l ,,(I),ER)

- €r

: ) o

(c’p

il

0
7€

N
0

fl(l ,,q), €|)
fo(I', D, €)

(50 o))
= +

I !
wherey is constant, and, are nonlinear functions af’,®),
and in geneneral, contain linear and nonlinear terms énd
will be zero at the origifnote that thef;’s will be different
than those in(17) and (20)]. Because we have applied a
conservative controller to our system, the closed-loop dy-

), (22)
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namics(22) is also a Hamiltonian system; therefore areas in Ny 3
the phase space are conserved, and no attractors can be %
T

present. In terms of control, this means that if the system is

in an initial state which is inside the island, then the trajec- I
tory “orbits” the target but never settles onto it. Some dissi- §
pation must be present in order for control to be achieved.

Settingeg=0 in (19) the linear term 0f22) can be solved

to give ®
[ A . “’_
®(1) cog VA 7eit) e sin(vA7et) FIG. 3. A qualitative sketch of the dynamics wheg>0. The

<|'(t) > - [ne ' node is denoted by the poir). The nonlinear terms have not yet

na . N / been added. The effect of “transient amplification” is clearly

sin(VA &) COE(\)\WE't) present. The horizontal line is the old line of neutral stability which

separated the two shear flow regions.
X ((13(0) ) (23)
1'(0) ) of interest here, the Takens-Bogdanov bifurcation involves a

Hence, we see that the trajectories orbit the target with fregegenerate saddle-node bifurcation0) when &/ 0. The

quencyy\ 7¢ and never settle on to it. Further, tRa/ 7¢, Svi?;? ?;Thee Tgr%eeta:‘torthc%r?t%glm will be the solution(2)
term in the off-diagonal entries @23) show that the island Wheneg=0 [Fig. 1(B)], we Have aline of neutral stability
which is formed is very thin. This can be seen by following R . '

. . . which bounds two shear flow regioris’ >0, and|’<0).
an orbit which starts g’ (0)=0,®(0)=A®]. The orbit, cen- A
tered about the origin, is elliptical and will intersect the When e becomes greater than zef®ig. 3) a stable node

: L ; ; appears, denoted. The effect of the previous shear flow can
axis whent=t, =/ (2VA e (on.e?quarter of the pgm) € still be seen, however, as the trajectories must approach the
can see fron(23), that the orbit intersects the axis at(l’

e - . : — node tangentially along the old neutrally stable line with very
=-V7&/NA®,d=0), hence the island is very thiD(\e)]  sjow transverse dynamics. The further a trajectory starts

compared tothe initiab® displacement. However, this is- away from the node the greater the effect of the shear flow
land will open up rapidly ag is increased. which forces the trajectory to travel further in the horizontal
In the next section, we will shovy that the presence of thegirection before being attracted to the node. This effect is
€ terms in the linearized dynamics enlarges the basin ofnown as “transient amplification” since the distance to the
attraction associated with the Takens-Bogdanov bifurcatiomgde will typically grow, before the slow decay to the node
and thus improves the control. In Sec. V we will give angets in. If the diagonal terms @R0) are slightly different
explicit example of this result using a driven NLS equation.(éRﬁt €ro), Fig. 3 changes slightly because the exact degen-
eracy of the eigenvectors is lifted. However, transient ampli-
IV. TAKENS-BOGDANOV BIFURCATIONS fication still occurs since it is due to the linear term being
ill-conditioned[6,12—14.

In Sec. Ill, we showed that, in general, the linearized dy- Provided certain conditions are meescribed in Ref;7])

namics of an integrable Hamiltonian system becomes nondLg‘ saddle-point appears in the neighborhood of the node. In

agonalizable in the limit of no contrdleg| 0 and ¢ — 0). Fig. 4, we zoom in on the area around the node with O
When a system’s linearized dynamics becomes nondiagonaé1

abl Tak Boad bif . The i \nd we include the nonlinear terrisandf,. One-half of the
Izable, a Takens-Bogdanov bifurcation occurs. The Interesteg, ¢ neytral stability becomes one-half of the unstable

reader is directed to the most recent edition of Ref.for a manifold (W) for the saddle point, sometimes called the

thorough discussion of Takens-Bogdanov bifurcations an%addle—sink connectiomhis piece of the unstable manifold

Refs.[6,7] for a discussion of estimating the distance to th?ends at the degenerate nod®, The other piece of the un-

basin boundary in the subcritical case, and aspects of Nois& ple manifold(W) can lead to another attractor of some
driven escape in the purely dissipative case. We do not Corﬁ/pe(not showi. In Fig. 5, we show the full basin of attrac-

sider the full unfolding of the Takens-Bogdanov bifurcation,tion for the nod.eO THe ,saddle pointsS, also has a stable

but only those parameter ranges relevant to the present con- "

trol problem(i.e., those having a basin of attractjom par-

ticular, we study the unfolding using the natural parametri- WS

zation inherited from of our control law rather than that of 5

Ref. [9] (note that we keep the target fixed at the origin, CS wi

while the standard parametrization moveslit this section,

we will present the information most relevant for our work s ‘
here as well as expand upon the results of REs/] to we
include the conservative term.
We begin by considering the purely dissipative case, FIG. 4. lllustration of the “triangle relation” of Ref§7]. The

=0. We will use(20) as our generic example of a system shortest distance to the basin boundaty,is now along some other
exhibiting a Takens-Bogdanov birfurcation. For the situationdirection in the phase space besides the saddle-sink connection.
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B9 R ) S S
i’ - — M€ T €ER I’ blq)z"'bzq)I, ' ( )

Wi where we have chosexye >0 andb,,b, are constants. The
S s open-loop(eg=¢€,=0) form of (24) is sometimes known as
I ) = L4 the Bogdanov fornj9]. The nonlinear terms are the generic
7 ! dominant terms for a Takens-Bogdanov sysi&imfound by
casting the open-loop dynamics(@f7) into normal form. We
ws now describe how to estimate, using the triangle relation
of Ref. [7].
First, find the location of the saddle by settidg=1=0
and solving
-2 .

s (25

€&+ \7€; , (€&+\7€)er
FIG. 5. A typical basin of attraction for a node undergoing a

(bt erb)’ S (Nby+ egbpN
Takens-Bogdanov bifurcation. Notice the distinctive tear drop shape . 2 . . .
of the basin due to the near degeneracy\Sfand W~ As in Ref.[7], we see that the< term is dominant if\b;

andb, areO(1). It is important to note, however, that when
) ) , er=0 ande # 0, the dynamics of24) are diagonalizable and
manifold (W) which forms the boundary of the basin of o degenerate. In this case, the normal form is suspect be-
attraction forO. ExtendingW* typically gives a tear-drop  cause we need to include higher order terms so that we may
shaped basin nea which is one hallmark of a Takens- correctly describe the location of the saddle and the shape of
Bogdanov bifurcation. Some sample trajectories are includegys, |n what follows, we assume < ex.
in Fig. 5 and labeledT;. Notice that while one of the trajec- Second, linearizg24) about the saddle point®=dg
tories, Ty, is attracted directly into the node, the other trajec-y; | =lg+v),
tory, T,, misses the node on its first approach and must travel
in the vicinty of W before connecting to the node. There is . —€R A
only one direction in which a trajectory may approach the ( ): 26 (u) ( 0 )
node, along the saddle-sink connection. The tear-drop shape v N + 7€ —€r b,u?
for the basin comes about becauseg@s0, the eigenvectors
of the linear dynamics in the vicinity of the saddle becomeThe eigenvalues of the linear dynamics are
degeneratgparalle) and, therefore, the angle between the—ez+ 2652+ 5¢,. This verifies that the second fixed point is
stable and unstable manifold @& decreases. The near- indeed a saddle poiritecall, we fix 7 > 0), for A>0.
degeneracy of\ and\WF can be seen in Fig. 5. Third, find the angle betwee?® andW* in Fig. 4, which
Due to the shape of the basin of attraction, systems exhibwe denoteg. This is done by finding the eigenvectors of the
iting a Takens-Bogdanov bifurcation are extremely sensitiveinear dynamics of26) and using the cosine relation for the
to noise and parameter uncertairij, and the subcritical dot product of the two vectors. It can be shown that
threshold of instabilityi.e., the distance to the basin bound-
ary) scales differently from normal saddle-node and Hopf
bifurcations[7]. Both [6] and [7] demonstrate that the dis-
tance to the basin boundaxy,, is proportional toe}(y> 1),
where y can be computed using a simple formula once th

(26)

v 1

_
3’2
o= \T\,zeﬁﬁ 7€ (27)

eFinaIIy, the triangle relation from Fig. 47] provides the

normal form of the dynamics in the neighborhood of thees’t'm"’lte
target is found. A normal form analysis simplifies the dy- > inne |
namical system near the target using near-identity transfor- o~ dgf= V2e5+ N\ 7e;, (28)

mations. The normal form reveals which nonlinear terms A (boh + eghy)
govern the topology of the phase space near the tgeggt  wheree < ex. For discussion of the higher order corrections
the location of the basin boundary of the tajgmtd, foreg  to (28), see Appendix C. As demonstarted in Appendix C, the
> ¢ (see beloy, gives the location of the saddI8, In some  largest source of error in the triangle relation comes from not
applications, noise may be applied randomly in the phaséncluding the curvature of the stable manifold ({®8). The
space, and therefore, also gives a noise threshold for in- triangle relation is the first order term in a Taylor series ap-
stability. However, wherez |0 and ¢ # 0, the normal form  proximation of the stable manifold. In Appendix C, we esti-
can give misleading results, as will be shown. mate the error in(28) by including the next higher order
We consider the case in which the controller contains botherms in the Taylor series approximation. We see fi@8)
dissipative and conservative terms. Our goal is to derive ghat in the purely dissipative case=0, 0.~ e3°, and we
subcritical threshold scaling; (e, ). We will use a method  recover the result from Ref7]. Hence,(28) shows that the
similar to that in Ref[7]. Following our results from Sec. presence of a conservative term in the control law increases
11, the normal form of our model system to leading order in o.. This is sketched in Fig. 6. Notice that in Fig. 6 tlhathas
the vicinity of the control target is dramatically increased as compared to Fig. 5 and now, the
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1
H= f (9 - |ax®dx, (30
0

whereq’ is the complex conjugate af(x,t). We restrict our
attention tog,q" that areC”. We consider the set of all such
functions to be our phase space witl,q) as dynamical
variables on that space. The phase space varight@an be
written as

o0

qx.t) = >, a,(t)exp2minx/L), (31)

n=-o

thus eache?™™ define a basis direction in the phase space,
which is infinite-dimensional and has embedded within it

. invariant N-tori. The ®-function solutions of Ref[15] give

explicit representations of the dynamics on tNeori. In
FIG. 6. A qualitative sketch of a typical basin of attraction for a what follows, we will be interested only ingy(x,t)

node in a Takens-Bogdanov system with a conservative €5 expy2ja2t), thus restricting ourselves to targets that lie on
present. Notice how much larger the basin is here, as compared 5) one-dimensional invariant torus. This allows a very com-

Fig. 5 and note also the target point is now astable spiral, plete analysis and shows that this control problem is exactly

) ~of the form discussed in Sec. IIl.
node has become a degenerate spiral as demonstrgtEd).in

In Sec. V, we will apply the results from this section and

Sec. Il to a simple control scheme for a driven nonlinear ) o
Schrodinger equation. Our goal is to contro{29) to some targetjy(x,t) which is

an exact solution t@29). We proceed as we did above by
choosing our closed-loop dynamics to be

A. The control law

V. CONTROL OF THE NONLINEAR SCHRODINGER . 2 . .
EQUAT|ON Iqt+qxx+2|Q| q_I(ER+|EI)(q0_q)- (32)
) ) ) ) ) Note that the presence of then front of the control law

The one-dimensional focusing nonlinear Schrédingelkeepse, the dissipative part of the control argthe conser-
equation(NLS), vative part as was our convention in Sec. II. This control law
is the same a#l). We chooses <0 so that the target, is
at the center of the island in the conservative lifei{=0) as
discussed in Sec. Ill.

Equation(32) is a particular example of a driven nonlin-
governs the envelope dynamics of waves that, to leadingar Schrédinger equation and has been studied extensively
order, are weakly nonlinear, nearly monochromatic, and disby Li et al. [18], Haller [19], and by Li and Wigging20] in
persive. Here, we consider solutions(@9) that are periodic the case of,=0. This body of work has revealed the rich
in spacefi.e., q(x,t)=q(x+L,t) for some box sizel., and we  geometrical structure that exists in the solution space of the
chooselL=1]. The NLS is used as a model system in manydriven NLS. These authors have extended the finite-
areas of physics such as plasmas, water waves, and nonlinetimensional methods of invariant manifolds, Melnikov
optics. The interested reader is referred to R&§] which  theory, homoclinic tangles, etc., to the infinite-dimensional
contains many references for applications of the NLS in itssolution space of this nonlinear PDE. We, however, will ask
introduction and develops a special class of exact solutiondifferent questions. As stated earlier, our ultimate interest is
to the NLS, specifically those associated with modulationato learn how to control physical systems for which NLS-type
instabilities. Ultimately, we wish to use this special class ofdynamics are reasonable models. We will exploit the integra-
solutions to design control laws for NLS-type systems suchbility of the open-loop dynamics to gain insight into geo-
as the Ginzburg-Landau equatift6] and Dysthe’s equation metrical aspects of the control problem. The previously men-
[17]. The Ginzburg-Landau and Dysthe equations are notioned authors found that complex behavior exists
integrable, but NLS appears as a limiting case. It is hopedhroughout the NLS’s solution space. Our goal is to suppress
that the current work described here will provide insights inthis behavior in the neighborhood of certain target solutions.
developing control laws for these nonintegrable systems as We consider plane wave, i.e. spatially uniform, solutions
well. Such control laws, for example, might be designed toof (29) hence,qy,=0. Fix gy to be go(t)=a exp(2ia®(t—ty))
suppress instabilites or to exploit them for pulse formationwhere a is some real positive constant. For simplicity, we
That work will be reported elsewhere. In what follo9)  will chooset,=0. Hence, we first restrict ourselves to the

i+ Oxx+ 2|9%g =0, (29

will be our open-loop dynamics. invariant manifold of plane waves, denoted Hs in Ref.
The NLS is an integrable Hamiltonian system with [18]. Note thatll. is an invariant manifold of the closed-loop
Hamiltonian, (32) dynamics becauseq e 1., therefore, ifq(t=0) is a
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plane wave, then it will remain so. In what follows, we will Im(q) Im(q)

assume)(t=0) e Il.. e
We ask under what conditions dogs- q,? We will find, f \
I@n
ST

as is demonstrated in Refgl8-2(, that two attracting so- / fﬁ
lutions can exist orll,. For eg>a? (g=0), however, the AR
(A) (B)

Re(q)
whole complex plane attracts to the node. We will also show &y

that the open-loop dynamics (29) are that of a shear flow
and therefore a Takens-Bogdanov bifurcation occurs at the
targetqy when the control is applied. As discussed in Sec. 1V,
the presence of the Takens-Bogdanov bifurcation means that
as ;| 0, the target has a small basin of attraction in the 5 7 The dynamics fof34) when ex= € =0 are shown ifA),
purely dissipative casg; =0). Thus, only a small amount of 56 that this is a shear flow. The bold circular orbit f@sa. (B)
noise [0~ O(e3), see below causes loss of control of the shows the dynamics aB4) transformed into coordinates rotating
system when a purely dissipative control law is applied.with the target. Notice thaB) is a shear flow with a fixed circle of
Once control is lost, the system settles onto the other attragretural stability.
tor, which is a plane wave of much smaller amplitude. In

Sec. Il we explained that the presence of the conservative

term, ¢, will cause the basin of attraction fao, to increase

in size, hence, increasing the controllability of the system. In )
what follows we will demonstrate that effect as well. We will 0=2p°.
finish our analysis in Sec. VI with a brief discussion of con-

trol of NLS to spatially nonuniform targets. This is still work expected from Sec. Ill. We can also transform into coordi-

in progress and will be treated in a separate paper. nates rotating with the targgthe bold circle in Fig. 7A) of

Before we move on, it is worth mentioning that Frledlandg“a closed-loop dynamics by setting(t)=2a2t-6(t) and

has shown that the NLS can be autoresonantly excite Loking at thep—y dynamics as shown in Fig(B) where
[21,22 and controlled. Autoresonance occurs when a nonlin- g P y 94

ear oscillating system phase locks to a small amplitude os¥=2(&°~p?). Thus relating the dynamics of NLS {a6).
cillating drive with a slow frequency chirp. Autoresonance Next, we analyze the closed-loop dynamics by inserting
results in self-consistent control of the amplitude of the sysour ansatz(t)=p(t)e’, into (33) to get

tem as the drive frequency changes because the driven sys-

p=0,
(34

As shown in Fig. {A), (34) describes a shear flow as

tem changes its state in space and/or time in order to phase p = ex(@ cody) - p) — ga sin(y),

lock to the drive. For systems like NLS, where the frequency (35
is a function of amplitude, this means that phase locking can 5 o Q€R . €

be used to manipulate the amplitude without feedback and p=2@"-p7) - Tsm(z,/;) - ;(a cosy) = p).

using a small gairicoupling, €. In Ref.[21], Friedland and
Shagalov demonstrate that the plane wave state of the NLS Figure 8 illustrates the state space(86). The variables
can be autoresonantly excited, and that as the amplitudare the realx=p cog¢)]) and imaginanfy=p sin(:)]) parts
reaches a certain threshold, a spatially modulated form arisé¥ g with ¢ =0 andez=0.4. The tear drop shaped basin of
and eventually becomes a shape not unlike a soliton. In Refttraction,B, for the targetO, is clearly present and is char-
[22], Friedland extends his work to standing waves, anccteristic of the Takens-Bogdanov bifurcation. Notice how
more recently with Shagalov Ref23] has shown how to smallB is locally, even though the strength of the dissipation
excite multiphase solutions of the Korteweg-de Vii&slV) is quite high(eg=0.4). Physically, this tells us that only a
equation. Our work complements that dong24—-23: their ~ small region of “nearby” states are controllable to our target.
work deals with a drive with fixed gain and a frequency Worse yet, there is a small noise threshold for instability.
chirp, ours has a drive with a fixed targe chirp and we  This can be quantified by measuring the shortest distance,
consider the size of the basin of attraction. o.(€r), between the basin boundaWf, and the targeQ, in
the negativex direction. The point in Fig. 8 denotedlis a
_ saddle point whose location will play a crucial role in com-
B. Analysis puting o, as was shown in Sec. IV. The unstable manifold of
the saddleS, is denoted\M. The point,Q, is a stable spiral
and is associated with a small amplitude plane wave.
In Sec. lll we stated that the presence of the conservative
term in the controllefe) will enlarge the basinB. Figure 9
g+ 2/0l2q=i(er +i€)(a exp2iat) - q). (33) illustrates this effect. Figure 9 shows the state spao@®f
with eg=0.4 ande¢=-0.1. Notice how much largeB is in
We begin our analysis by writing|(x,t) in the form,  Fig. 9 as compared to Fig. 8. The labels in Fig. 9 denote the
q(t)=p()e?V (wherep and 6 are real functions of timeand ~ same points and manifolds as in Fig. 8. It is interesting to
subsituting it into(29) to study the open-loop dynamics. note that the conservative term need not be large in order for
Upon substitution intg29) we get its effect ono, to be noticeable.

Restricting ourselves to plane waves and usmpgt)
=a exp(2ia’t) as our control targe(;32) becomes
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FIG. 8. The state space diagram {86) with
a=1, =0, and eg=0.4. The variables are
=Reg) and y=Im(qg). Notice how the stable
manifold (W°) of the saddle(S) creates the tear
drop shaped basin of attractidB, for the target,
O. The unstable manifold of the saddI®) is de-
noted byW!. The large value o&g was chosen to
accentuate the features of the basin.

Im(q)

2 1 0 1 2
Re(q)

As is implied in Sec. lll, the most useful set of coordi- In Sec. lll, we transformed our angle coordinate into a
nates will be the action-angle coordinates. The action can beew coordinate rotating with the target angle using a gener-
found using(q”,q) as our dynamical variablegp,q), and  ating function, F,(I",¢,t). Recall that this transformation
integratingp dq around one cyclgnoting that the period, does not change the action coordinate. Following similar

T=27lw=7/p? [3,10,11, arugments presented in Sec. Il we find
1 1 dq 1fw/n2*. Fo=(¢p=2gt)(I" +1
| =—6¢p dg= —$p—dt= — 2ilgl2g dt= 02. 2= (=21 +1o),
- $p da=——¢p Jdt=—— . lal“q dt=p
(36) I=1"+1g,
We can then rewritg|(t) in terms of action-angle coordi- ~ ) (38)
nates(l, ) by q(t)=\I expi¢) with the target action), K =H("+1g) =2lo(lo+1"),
=a. Using(30) we can rewrite the Hamiltonian,
H(|):|q|4:|2, D=¢-2.
_ (37)  This transformation is equivalent to substituting(t)
d=2l. =w(t)exp(2ia’t) into (33),
2_
1
- FIG. 9. The state space diagram {88) with
% 0 a=1, ¢=-0.1, andeg=0.4. Notice that the tear
B drop shaped basin of attraction is still present, but
is larger than in Fig. 8. Even though is small
compared toeg, its effect is quite noticeable.
-1
24
2 1 0 1 2
Re(q)
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iw, — 282w + 2wPw = i(eg +i€)(a—w). (39)
We can writew(t) in terms of action-angle coordinates .
w(t)=\1" expi®), substitute this intg39) and expand about 8 .-
the target)’ =a?+y and®=0+x to get . -
6§ , 36 , € S 10 . .

. —XT= =y + X & .

X\ [ -e 2-—%|(x 2% " gat T 222 g R

L= 2a + , = ol .

y 26'|a.2 — €R y - GRaZXZ - €_R4y2 + Xy .

4a ol .
(40) . a triangle relation
. = manifold approximation

note that(x,y) are now linearization variables and not the  -16
variables from Fig. 8. Further, note that from Sec. IV, we
know that thex? term in they equation is the dominant In(er)
nonlinearity. After performing a near-identity transformation,
the normal form of(40) is

-5 -4 -3 -2

FIG. 10. Relative error in predicting.. The triangles denote the
error using the first order Tayldi.e., triangle relatiopapproxima-
X - 2 X 0 tion of o, and the squares denote the error using the second order
L= ( )( ) + ( ) + (41) Taylor approximation otr.. Here, relative error means the magni-
y y tude of the difference between the numerical resulioénd theo
Note, the near-identity transformation does not effect thePredicted by the two methods of approximation.
leading orde(in terms ofeg and¢) nonlinear terms. Further,
we notice that in order for an island to open around theintersects the axis of the state spagsimilar to Fig. 8. It is
target, ¢ must be negative becausg=2a?>0. From now important to note that the equations integrated for Fig. 10 are
on, we insert the negative sign explicitly. In this case, thenot (40), but rather the equations of motion for the real and

26| a2 — €R - GRaZXZ

bifurcation is exactly as discussed in Sec. IV. imaginary parts of33). For more details on this, please con-
Next, we find the position of the saddle: sult Appendix D. Figure 10 shows that the error in both
) 2+ dale, - 2 + daZe, methods converges to zero, however, the manifold approxi-

> . Ys= T (42 mation method does so much more quickly. Even though the
28%g 4a normal form analysis is performed in the limig— 0 and,
and we enforceg, < eg, for the reason discussed previously. N€nce, the predictions are only valid in this limit, Fig. 10
Following Sec. IV, the next step is to find the dynamics ofShows the purely dissipative scaling @f~ e, predicted by
(41) linearized about the saddle wikExg+u and,y=ys+v, the triangle relation, is good for a large rangeegk.

Xg=

U — €R 2 u
=0, 5 . (43
v €r-t+2a°€¢ —eg/\v VI. CONCLUSIONS
Next, we find the angled, between the eigenvectors @?3). We have shown that when attempting to control an inte-
Using the formula ford from Sec. IV, we find that grable Hamiltonian system to one of its exact solutions a
= succesful control law will contain both dissipative and con-
6= LZ\"Z_eﬁ + dale;, (44) servative terms. One source of the_difficulty for control is the
2 degenerate shear flow structure inherent to these systems.

hence, using the triangle relation we find The shear flow sets up a Takens—Bpgdanov bifurcation which
' leads to the small basin of attraction for the control target.
V2 ex’ + dale o The presence of the conservative term enlarges the basin and
oc =[x = E%T\"Zeé +4a%, (45 therefore improves the controllability of the system. Success-
R ful control laws for integrable Hamiltonian systems are ones
wheree¢ < eg. The higher order corrections are developed inwhich are more conservative than dissipative, but dissipative
Appendix C. We see that the basin boundary in the purelferms must be present in order for the system to settle onto
dissipative case is only a distance ©fe3) away (because the control target and must be strong enough to allow for a
for NLS b, =-a%¢g). In standard saddle-node bifurcationg, relatively short decay time.
scales likeO(eg). In Fig. 10, we compare the results for  Selection of the NLS to illustrate our results was more
finding o using the triangle method with the results from anthan a choice of convenience. We plan to use the insights
approximation of the stable manifold using higher ordergained in controlling NLS to develop control laws for non-
terms in the Taylor series expansi¢see Appendix C for integrable systems related to NLS: the previously mentioned
more detaily for the purely dissipative case. Figure 10 plots Ginzburg-Landau and Dysthe’s equation serve as examples
the difference between the numerical valueogfand the of such systems. These NLS-like systems contain physical
value estimated by each of the two methods. The numericgihenomenon which destroys the integrability. Such control
value ofo is found by computing where the stable manifold laws may suppress or excite pulse formation in the system,
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for example. We have had success in controlling both

Ginzburg-Landau and Dysthe’s equation to NLS targets, ot 0N O O O 0 0 0,
therefore we know that studying integrable Hamiltonian Aq 00 O0O0U O0O--0 0 A
models has relevance to the development of control laws for 6 00 0N O -0 0 0
nonintegrable systems. These targets are spatially nonuni- | ~2 2 2
form and are thes-function solutions from Ref[15]. This , |=|/0 0 000 0 0 P!
work is still incomplete and will be presented elsewhere. The . T : :
high dimensionality of these systems makes detailed analysis A 000 O 0\ o
difficult and led to our thorough study of the plane wave Oy N N
presented here. A 000O0OC- 00O An
Future work in this area could include studying the con- N
trol of integrable Hamiltonian systems with degrees of
freedom (2N-dimensional. The behavior of higher dimen- 01(A)
sional systems has the potential to be much more complex 0
than the case studied in this paper. To illustrate this, consider G(A)
a 2N-dimensional integrable Hamiltonian system with 2
Hamiltonian, H(1), wherel € RN. As in Sec. Ill, we trans- +1 0 | (49
form to a coordinate system which fixes some target solution, i
(I'9, ¢p), at the origin. The Hamiltonian now becomes gn(A)
0
K1) =31"-C-1"+h(1"), (46)  where theg, contains terms 0®(A?) and higher. The system

of equations (49) are the open-loop dynamics for an
2N-dimensional integrable Hamiltonian system whose origin

where we have ignored the constant termspntains terms  lies at the control target. The linear term(@®) is separated

of O(1"3) and higher, and thi x N matric,C, is the Hessian, into N noninteracting subspaces whose dynamics are those of
a shear flow, as expected. This potentially leads to Takens-

Bogdanov bifurcations of very high dimensionality. Know-
ing how the target’s basin scaléafter control is appliedis
#H crucial for understanding the control of the higher dimen-

Ciw= allalyl,’ (47 sional systems. The high dimensionality makes an analysis
. 0 which is similar to that done in Sec. IV difficult. Hence this
problem is still open to study.
BecauseC is a real symmetric matrix, we can diagonalize it ACKNOWLEDGMENTS
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APPENDIX A: THE TRANSFORMED CONTROL LAW

D =diag\{, N\, ... AN), Consider(4),
(48) .
z2=JV,H(z) + € (zy(t) - 2), (A1)
wheree=egl +¢J. We transform to a new set of coordinates,
Z e RN, via a time dependent transformation prz(Z ;t)

, such thatZ(0;t)=zy(t). We first findZ=dz /dt following an
@k: IK'(A) arbitrary orbit z(t)=z(Z(t);t). Define the Jacobian of the
a A transformation to be

A=0,

9z

My = —,
ki 5Zi

(A2)
where k=1,... N, (A,0) are the new coordinates, and
A1, ...,\y are the eigenvalues @. After reordering the ba- and note thaM=M(Z;t). Further, we denote the Jacobian

sis, the new equations of motion are following the target orbit ad/y(t)=M(0;t). We also assume
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that the transformation is smooth and invertibjee.,

. _an MY (erl + €)M = el + Mg IM, = €xl + € IMMo,
detM) # 0 for all Z andt]. The time derivative of becomes o (erl +&)Mo = egl + €M IMp = €l + €IMoMo

(A9)
dz - 9z dz + a_zk, where we have used the symplectic condition to write
dt aZ| dt Jt MO_l‘]:‘]MO- _
4y (A3) If we defineSy(t)=MgM,, (A7) becomes
z=MZ+—, :
at Z=JV,K(Z:t)- el -Z — §IS(1) - Z + O(Z?),
where summation over repeated indices is implied. Equation (A10)
(A3) holds for any orbit. Note that sincE=0 is a fixed 5 quoted in the text.
point, we have
Zy= E . (A4) APPENDIX B: DERIVATION OF THE ISLAND WIDTH
Jt (z=03t) FOR CONSERVATIVE CONTROL
The gradient transforms as The typical scaling of the island width with purely con-
servative control can be most easily demonstrated by ex-
d _dZy 9 ample. Consider a nonlinear one-dimensional Hamiltonian
Ek - aﬁﬂ (A5) system with Hamiltonian
— 12
Therefore, H=21"+h(D), (B1)
p 97 5 whereh(l) contains terms o®(1%) and higher. In this system,
W— = J——. (A6) the target oribit is(I=0,¢$=w,t). We add a general conser-
7 9z JZn vative perturbation, which is periodic and resonant with the
Noting thatM;llzﬁzm/ dz; and substituting the above results target:
into (A1) we get K'(1,¢) = 312 - ag cod ) + h(l), (B2)
: DT _,02(Z;1) the appearance of the minus sign in front of the cosine term
Z=MTIMVzH(Z(Z;1) - M T ensures that the island opens at the target, as explained in the
text. It is easy to verify that the fixed points for the system
+ M€ (zo(t) - 2(Z;1)), (A7) with Hamiltonian, K’, are at (1=0,¢=nm) for n
~ =0,1,2,... Figure 2 illustrates the phase space for our con-
whereM denotes the transpose bf. trolled system(B2), while Fig. 1B) shows the open-loop

The equation(A7) is true for a general coordinate trans- dynamics for this system. The value if along the separa-
formation. In particular, we are interested in canonical transtrix is given by its value at the saddle poiitt,(0,—7)=ae;.
formations. In canonical transformationdJM=J for all Z  Therefore, along the separatix
and we say thall is symplectic. Because the set of symplec- 1,2 B
tic matrices form a group, the symplectic condition also 31°—ag cod o) = ag. (B3)

holds forM™ for any M in the symplectic group. We further Solving (B3) for 14(¢), the actionl(¢) is at a maximum

note that from the theory of canonical transformatift¥,  \yhen =0, therefore it is easy to solve for the width of the
the M~19z/ 4t term can be recast in Hamiltonian form and island, A =~ O(\ae)

the open-loop dynamics written &=JV,K(Z,t) for some
new time dependent Hamiltonia, What interests us most

is the form of the control term@with control gaine) under APPENDIX C: HIGHER ORDER ESTIMATES OF o,
the transformation. We find this by Taylor expandi(@ ;t) . . . . .
about the targetz, In this appendix, we will examine an approximate equa-
tion for the stable manifold of the saddle in order to obtain
2(Z;1) = zo(t) + Mg(t) - Z + O(Z?), an error estimate fo(28) and for (D9). This will be done

using a Taylor approximation for the stable manifold of the
saddle. In Sec. IV, we mentioned that the triangle relation is

M(Z;1) = Mo(t) + O(2), (A8) a first order Taylor series approximation for the stable mani-
fold. The first order Taylor approximation is, of course, a
M= Mo'l(t) +0(2). striaght line. As can be seen from Fig. 8, the stable manifold
has a curvature to it which requires higher order terms in the
The control term then becomes Taylor approximation for a more accurate measurement of
. _ N 5 o.. We will see that while the triangle relation does not take
M™ € (zo(t) = 2(Z;1)) == Mg - €- Mg - Z + O(Z9), into account this curvature, it still yields the correct leading
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order dependence ig; for o.. For simplicity, we will con- 0,05
sider only the purely dissipative caég=0). '

1. Approximation of the stable manifold of (24) 004

Recall that our generic two-dimensional dynamics about
the target are

® _(—eR N )(q>>+( 0 ) - 00
i’ B 0 — €R |’ blq)2+b2q)|, ' ( )

Finding an approximate equation for the stable manifold of 002
the saddle is the same as finding an approximate equation fo
I’(®) near the saddle point. Hence, we are interested in solv-
ing the equation 0.01
’ ’ 2 ’
F@1 =3 e ruP bl D
do - eg® +\I
for 1’'(®). We can think ofF(®;l’) as a function of the
angle,®, parametrized by the actidn. The stable manifold
will be a curve,l’(®), which passes through the saddle point  FIG. 11. The state space (€9) and(C10) near the target. The
in the direction of the saddle’s stable eigenvector. straight line is the approximation of the stable manifold used by the
Next, we approximated’(d) by a quadratic polynomial triangle relation.

(Taylor series to second order
) - 2 parameter dependend¢& eg). The multiplicative constant
V(D) = ay + ap® + ag®”. (€3 not present in the triangle relation results is due to the cur-
We insert the approximation into the left-hand side(GR)  vature of the stable manifold and does not change the leading
and Taylor expand the right-hand side @2) about the order parameter dependence. For a clarification of this, see

<

(C2)

o

0.996 0997 0.998 0.999
X

saddle, Fig. 11 below. We can systematically improve this estimate
by including more terms in the Taylor expansi@B). Next,
oyt 205 = (2\by + epber _ by o (cay  We will computeor for the NLS problem.

(ANby+ egbo)N  2¢
LR R 2. Manifold approximation for NLS

By equating terms of similar powers df gives . . . .
yeq 9 P 9 We will use the equations developed in Appendix D to

(2D + egby) e derive an approximation of the saddle’s stable manifold. We
a2=" (\by + €D\ begin with the equations,
. (C5) X=eg(a—x) +2y(0%+y?-ad), (C9)
1
ag="5 : 2.2 a2
2€R y=—ery = 2X(¢ +y? - @), (C10
The terma; is found by observing that where (C9) and (C10) describes the time evolution of the
, _ 2 real (x) and imaginary(y) part ofq in (33). The location of
Is(Pg) = @y + s+ ags, (Co) the saddle in this coordinate system is
this gives
e a2+ \a'- &
2&‘:; 7)\b1 + 4b26R Ys= Z_alXS: 2a . (Cll)

= . (C?)
b\ + egbo)\ 4(by\ + egb

_ (b, ER.Z)' (bah + écby) . We are interested in finding a curxéy) which approximates

We can approximater by finding where the stable manifold the stable manifold. As in the eariler case, we study the ratio

intersects thab axis (see Fig. 11 below, where locally the

coordinate is analagous 16 andy is locally analagous to ) — dx _ er(@a—x) +2y(x* +y* - &)
Fly;x) = —= 5 2 (C12
®). Hence, dy —ery—2X(x*+y-—a)
26 7\b; + 4b,¢ We will approximate the stable manifold with a quadratic
oo~ ay= R L 2R (C8) | ial
(by\ + egbo)\ 4(by\ + €gby) polynomial,
~ 2
We see thatC8) is written in the formo,~ o'"g(eg), where X(y) = ay + agy + agy”, (C13

aff’) is the noise threshold given by the triangle relation. Im-The coefficientss, andc; can be using the method outlined

mediately, we see that the triangle relation gives the correcbove. We can see from Fig. 8 that lies approximately
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along thex axis. Therefore, the most important term in the b= 2p(a2 - p?) — e(a co — ) — eoa Si D2

approximation will bec;. We findc, by evaluating(C13) at pt=2p(a" = p) ~ €(@ cody) = p) - &ga sin(y). (D2)

the saddle point, These equations now describe the system in a frame rotating
with the target solution. However, note that the target is not

c,~a- igeé_,r O(el) + -+ (c14 & the _origin, it_is at(p=a, y=0). Nextz we transform to

Cartesian coordinateg=p coq ), y=p sin(y),

Because we approximate, as lying along thex axis, o, X= ex(a—X) — ey + 2y(C +y2 - a?), (D3)

= a_Cl,

5 y=—ey+ea(@a-x - 220 +y*-a’). (D4)
Oc= Toht Ol + . (€15 .

The equationgD3) and (D4) are the equations from which

We see that just like in the generic case, we have a multipli?V® Will derive o.. The target is located dk=a,y=0). For

cative correction to the leading order term due to the curvath® purposes of Fig. 10, we will be only interested in the
ture of the stable manifolsee Fig. 11 Figure 11, shows the Purely dissipative case. Hence, we will sg&0. Next, we
state space afC9), (C10) near the target. The curW# is the will co_mputg the normal form about the target to second
stable manifold of the saddI§, andW! is the unstable mani- Order(including theeg termg with y=p; andx=a+p;,

fold which connects the saddle to the targ®t, The straight - B 5 5

line is the approximation of the stable manifold used by the B = ( & 4a ><131> + (‘ 2ap3 ) + (D5)
triangle relation, a first order Taylor approximation \oF. B, 0 -e/\B 4aB.8,)

The second order Taylor approximationwf is indistinguis-

able fromWs at this scale. We see immediately th@9)  We can solve for the location of the saddle usibp),

gives the correct scalingas shown in Fig. 10for o, but 38

(45) is off by a constant. This can be seen by noting the scale <IBIS: 3”328: —Rg) . (D6)

of thex axis in Fig. 11. In fact(D9) is slightly less than the 4a 32a

true value ofo, (which is whereW? intersects thex axis)

o I
mainly due to the curvature aff. While this plot is gener- l;l;xt,)r\;\[/e linearize(DS5) about the saddief; = Bis* a1, fz
ated with a specific value af;=0.1, the shape of the mani- "~2> "2
folds is characteristic of this unfolding of the Takens- ) - 2er 4a@°
Bogdanov bifurcation. (fvl) _ 3E§ (Cﬁ) . (D7)
ay _2 0 ay
8a

APPENDIX D: FINDING o. USING THE REAL AND
IMAGINARY PARTS OF (33) The angle,d, between the eigevectors of the linear part of

In this section, we will present the equations and the(P7) can be shown to be,

analysis used to develop the numerical results of Fig. 10. In ER\‘E

Sec. V, we choose to use action-angle coordinates because it =—. (D8)
mirrors the analysis done in Sec. IV. However, the more 4a

familiar coordinates of Re) and Infq) provide more insight  Eingjly, using the triangle relations.= 8,6, we find

into the physics of the problem. The used in Fig. 10 is the _

one computed below. We will see that ba#b) and (D9) eév’S

have the same scaling i %~ JeB T (D9)

We begin by subsituting(t) = p(t)&?4) into (33), _ _
where the error terms have been computed in Appendix C

p = ex(@ cogy) — p) — a sin(y), (D1)  [24,25.
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